An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

Overview

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP is an exact algorithm based on the branch-and-bound technique for solving the semi-supervised Minimum Sum-of-Squares Clustering (MSSC) problem with pairwise constraints (i.e. must-link and cannot-link constraints) described in the paper "An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering". This repository contains the C++ source code, the MATLAB scripts, and the datasets used for the experiments.

Installation

PC-SOS-SDP calls the semidefinite programming solver SDPNAL+ by using the MATLAB Engine API for C++. It requires the MATLAB engine library libMatlabEngine and the Matlab Data Array library libMatlabDataArray. PC-SOS-SDP calls the integer programming solver Gurobi. PC-SOS-SDP uses the Armadillo library to handle matrices and linear algebra operations efficiently. Before installing Armadillo, first install OpenBLAS and LAPACK along with the corresponding development files. PC-SOS-SDP implements a configurable thread pool of POSIX threads to speed up the branch-and-bound search.

Ubuntu and Debian instructions:

  1. Install MATLAB (>= 2016b)
  2. Install Gurobi (>= 9.0)
  3. Install CMake, OpenBLAS, LAPACK and Armadillo:
sudo apt-get update
sudo apt-get install cmake libopenblas-dev liblapack-dev libarmadillo-dev
  1. Open the makefile clustering_c++/Makefile
    • Set the variable matlab_path with your MATLAB folder.
    • Set the variable gurobi_path with your Gurobi folder.
  2. Compile the code:
cd clustering_c++/
make
  1. Download SDPNAL+, move the folder clustering_matlab containing the MATLAB source code of PC-SOS-SDP in the SDPNAL+ main directory and set the parameter SDP_SOLVER_FOLDER of the configuration file accordingly. This folder and its subfolders will be automatically added to the MATLAB search path when PC-SOS-SDP starts.

The code has been tested on Ubuntu Server 20.04 with MATLAB R2020b, Gurobi 9.2 and Armadillo 10.2.

Configuration

Various parameters used in PC-SOS-SDP can be modified in the configuration file clustering_c++/config.txt:

  • BRANCH_AND_BOUND_TOL - optimality tolerance of the branch-and-bound
  • BRANCH_AND_BOUND_PARALLEL - thread pool size: single thread (1), multi-thread (> 1)
  • BRANCH_AND_BOUND_MAX_NODES - maximum number of nodes
  • BRANCH_AND_BOUND_VISITING_STRATEGY - best first (0), depth first (1), breadth first (2)
  • SDP_SOLVER_SESSION_THREADS_ROOT - number of threads for the MATLAB session at the root
  • SDP_SOLVER_SESSION_THREADS - number of threads for the MATLAB session for the ML and CL nodes
  • SDP_SOLVER_FOLDER - full path of the SDPNAL+ folder
  • SDP_SOLVER_TOL - accuracy of SDPNAL+
  • SDP_SOLVER_VERBOSE - do not display log (0), display log (1)
  • SDP_SOLVER_MAX_CP_ITER_ROOT - maximum number of cutting-plane iterations at the root
  • SDP_SOLVER_MAX_CP_ITER - maximum number of cutting-plane iterations for the ML and CL nodes
  • SDP_SOLVER_CP_TOL - cutting-plane tolerance between two consecutive cutting-plane iterations
  • SDP_SOLVER_MAX_INEQ - maximum number of valid inequalities to add
  • SDP_SOLVER_INHERIT_PERC - fraction of inequalities to inherit
  • SDP_SOLVER_EPS_INEQ - tolerance for checking the violation of the inequalities
  • SDP_SOLVER_EPS_ACTIVE - tolerance for detecting the active inequalities
  • SDP_SOLVER_MAX_PAIR_INEQ - maximum number of pair inequalities to separate
  • SDP_SOLVER_PAIR_PERC - fraction of the most violated pair inequalities to add
  • SDP_SOLVER_MAX_TRIANGLE_INEQ - maximum number of triangle inequalities to separate
  • SDP_SOLVER_TRIANGLE_PERC - fraction of the most violated triangle inequalities to add

Usage

cd clustering_c++/
./bb <DATASET> <K> <CONSTRAINTS> <LOG> <RESULT>
  • DATASET - path of the dataset
  • K - number of clusters
  • CONSTRAINTS - path of the constraints
  • LOG - path of the log file
  • RESULT - path of the optimal cluster assignment matrix

File DATASET contains the data points x_ij and the must include an header line with the problem size n and the dimension d:

n d
x_11 x_12 ... x_1d
x_21 x_22 ... x_2d
...
...
x_n1 x_n2 ... x_nd

File CONSTRAINTS should include indices (i, j) of the data points involved in must-link (ML) and/or cannot-link (CL) constraints:

CL i1 j1
CL i2 j2
...
...
ML i3 j3
ML i4 j4

If it does not contain any constraint (empty file), PC-SOS-SDP becomes SOS-SDP (the exact solver for unsupervised MSSC).

Log

The log file reports the progress of the algorithm:

  • N - size of the current node
  • NODE_PAR - id of the parent node
  • NODE - id of the current node
  • LB_PAR - lower bound of the parent node
  • LB - lower bound of the current node
  • FLAG - termination flag of SDPNAL+
    • 0 - SDP is solved to the required accuracy
    • 1 - SDP is not solved successfully
    • -1, -2, -3 - SDP is partially solved successfully
  • TIME (s) - running time in seconds of the current node
  • CP_ITER - number of cutting-plane iterations
  • CP_FLAG - termination flag of the cutting-plane procedure
    • -3 - current bound is worse than the previous one
    • -2 - SDP is not solved successfully
    • -1 - maximum number of iterations
    • 0 - no violated inequalities
    • 1 - maximum number of inequalities
    • 2 - node must be pruned
    • 3 - cutting-plane tolerance
  • CP_INEQ - number of inequalities added in the last cutting-plane iteration
  • PAIR TRIANGLE CLIQUE - average number of added cuts for each class of inequalities
  • UB - current upper bound
  • GUB - global upper bound
  • I J - current branching decision
  • NODE_GAP - gap at the current node
  • GAP - overall gap
  • OPEN - number of open nodes

Log file example:

DATA_PATH, n, d, k: /home/ubuntu/PC-SOS-SDP/instances/glass.txt 214 9 6
CONSTRAINTS_PATH: /home/ubuntu/PC-SOS-SDP/instances/constraints/glass/ml_50_cl_50_3.txt
LOG_PATH: /home/ubuntu/PC-SOS_SDP/logs/glass/log_ml_50_cl_50_3.txt

BRANCH_AND_BOUND_TOL: 1e-4
BRANCH_AND_BOUND_PARALLEL: 16
BRANCH_AND_BOUND_MAX_NODES: 200
BRANCH_AND_BOUND_VISITING_STRATEGY: 0

SDP_SOLVER_SESSION_THREADS_ROOT: 16
SDP_SOLVER_SESSION_THREADS: 1
SDP_SOLVER_FOLDER: /home/ubuntu/PC-SOS-SDP/SDPNAL+/
SDP_SOLVER_TOL: 1e-05
SDP_SOLVER_VERBOSE: 0
SDP_SOLVER_MAX_CP_ITER_ROOT: 80
SDP_SOLVER_MAX_CP_ITER: 40
SDP_SOLVER_CP_TOL: 1e-06
SDP_SOLVER_MAX_INEQ: 100000
SDP_SOLVER_INHERIT_PERC: 1
SDP_SOLVER_EPS_INEQ: 0.0001
SDP_SOLVER_EPS_ACTIVE: 1e-06
SDP_SOLVER_MAX_PAIR_INEQ: 100000
SDP_SOLVER_PAIR_PERC: 0.05
SDP_SOLVER_MAX_TRIANGLE_INEQ: 100000
SDP_SOLVER_TRIANGLE_PERC: 0.05


|    N| NODE_PAR|    NODE|      LB_PAR|          LB|  FLAG|  TIME (s)| CP_ITER| CP_FLAG|   CP_INEQ|     PAIR  TRIANGLE    CLIQUE|          UB|         GUB|     I      J|     NODE_GAP|          GAP|  OPEN|
|  164|       -1|       0|        -inf|     93.3876|     0|       110|       7|      -3|      6456|  242.571      4802   8.14286|     93.5225|    93.5225*|    -1     -1|   0.00144229|   0.00144229|     0|
|  163|        0|       1|     93.3876|     93.4388|     0|        35|       2|      -3|      5958|        1      3675         0|     93.4777|    93.4777*|    79    142|  0.000416211|  0.000416211|     0|
|  164|        0|       2|     93.3876|     93.4494|     0|        47|       2|      -3|      6888|        0      4635         0|     93.5225|     93.4777|    79    142|  0.000302427|  0.000302427|     0|
|  162|        1|       3|     93.4388|      93.506|     0|        27|       1|       2|      6258|        9      3759         0|         inf|     93.4777|   119    152| -0.000302724| -0.000302724|     0|
|  163|        1|       4|     93.4388|     93.4536|     0|        47|       4|      -3|      3336|        0      1789         0|     93.4777|     93.4777|   119    152|   0.00025747|   0.00025747|     0|
|  164|        2|       5|     93.4494|     93.4549|     0|        37|       1|      -3|      6888|        0      5000         0|     93.5225|     93.4777|    47     54|  0.000243844|  0.000243844|     0|
|  163|        2|       6|     93.4494|     93.4708|     0|        51|       2|       2|      7292|       11      4693         0|     93.5559|     93.4777|    47     54|  7.36443e-05|  7.36443e-05|     0|
|  164|        5|       7|     93.4549|      93.475|     0|        22|       0|       2|      6888|        0         0         0|     93.5225|     93.4777|   122    153|  2.82805e-05|  2.82805e-05|     0|
|  163|        4|       8|     93.4536|     93.4536|     0|        38|       2|      -3|      3257|        0     668.5         0|     93.4704|    93.4704*|    47     54|  0.000180057|  0.000180057|     0|
|  163|        5|       9|     93.4549|     93.5216|     0|        41|       1|       2|      6893|        8      5000         0|         inf|     93.4704|   122    153| -0.000547847| -0.000547847|     0|
|  163|        8|      10|     93.4536|     93.4536|     0|        27|       1|      -3|      3257|        0       879         0|     93.4704|     93.4704|    37     45|  0.000180057|  0.000180057|     0|
|  162|        8|      11|     93.4536|     93.4838|     0|        33|       1|       2|      6158|       24      4233         0|         inf|     93.4704|    37     45| -0.000143677| -0.000143677|     0|
|  162|        4|      12|     93.4536|     93.4658|     0|        75|       5|      -3|      2793|      4.6      2379         0|     93.5111|     93.4704|    47     54|  4.89954e-05|  4.89954e-05|     0|
|  162|       10|      13|     93.4536|     93.5053|     0|        19|       0|       2|      3122|        0         0         0|         inf|     93.4704|    37     99|  -0.00037365|  -0.00037365|     0|
|  163|       10|      14|     93.4536|     93.4701|     0|        31|       0|       2|      3257|        0         0         0|     93.4704|     93.4704|    37     99|  3.13989e-06|  3.13989e-06|     0|

WALL_TIME: 304 sec
N_NODES: 15
AVG_INEQ: 2788.05
AVG_CP_ITER: 1.93333
ROOT_GAP: 0.00144229
GAP: 0
BEST: 93.4704
Owner
Antonio M. Sudoso
Antonio M. Sudoso
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022