An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

Overview

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP is an exact algorithm based on the branch-and-bound technique for solving the semi-supervised Minimum Sum-of-Squares Clustering (MSSC) problem with pairwise constraints (i.e. must-link and cannot-link constraints) described in the paper "An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering". This repository contains the C++ source code, the MATLAB scripts, and the datasets used for the experiments.

Installation

PC-SOS-SDP calls the semidefinite programming solver SDPNAL+ by using the MATLAB Engine API for C++. It requires the MATLAB engine library libMatlabEngine and the Matlab Data Array library libMatlabDataArray. PC-SOS-SDP calls the integer programming solver Gurobi. PC-SOS-SDP uses the Armadillo library to handle matrices and linear algebra operations efficiently. Before installing Armadillo, first install OpenBLAS and LAPACK along with the corresponding development files. PC-SOS-SDP implements a configurable thread pool of POSIX threads to speed up the branch-and-bound search.

Ubuntu and Debian instructions:

  1. Install MATLAB (>= 2016b)
  2. Install Gurobi (>= 9.0)
  3. Install CMake, OpenBLAS, LAPACK and Armadillo:
sudo apt-get update
sudo apt-get install cmake libopenblas-dev liblapack-dev libarmadillo-dev
  1. Open the makefile clustering_c++/Makefile
    • Set the variable matlab_path with your MATLAB folder.
    • Set the variable gurobi_path with your Gurobi folder.
  2. Compile the code:
cd clustering_c++/
make
  1. Download SDPNAL+, move the folder clustering_matlab containing the MATLAB source code of PC-SOS-SDP in the SDPNAL+ main directory and set the parameter SDP_SOLVER_FOLDER of the configuration file accordingly. This folder and its subfolders will be automatically added to the MATLAB search path when PC-SOS-SDP starts.

The code has been tested on Ubuntu Server 20.04 with MATLAB R2020b, Gurobi 9.2 and Armadillo 10.2.

Configuration

Various parameters used in PC-SOS-SDP can be modified in the configuration file clustering_c++/config.txt:

  • BRANCH_AND_BOUND_TOL - optimality tolerance of the branch-and-bound
  • BRANCH_AND_BOUND_PARALLEL - thread pool size: single thread (1), multi-thread (> 1)
  • BRANCH_AND_BOUND_MAX_NODES - maximum number of nodes
  • BRANCH_AND_BOUND_VISITING_STRATEGY - best first (0), depth first (1), breadth first (2)
  • SDP_SOLVER_SESSION_THREADS_ROOT - number of threads for the MATLAB session at the root
  • SDP_SOLVER_SESSION_THREADS - number of threads for the MATLAB session for the ML and CL nodes
  • SDP_SOLVER_FOLDER - full path of the SDPNAL+ folder
  • SDP_SOLVER_TOL - accuracy of SDPNAL+
  • SDP_SOLVER_VERBOSE - do not display log (0), display log (1)
  • SDP_SOLVER_MAX_CP_ITER_ROOT - maximum number of cutting-plane iterations at the root
  • SDP_SOLVER_MAX_CP_ITER - maximum number of cutting-plane iterations for the ML and CL nodes
  • SDP_SOLVER_CP_TOL - cutting-plane tolerance between two consecutive cutting-plane iterations
  • SDP_SOLVER_MAX_INEQ - maximum number of valid inequalities to add
  • SDP_SOLVER_INHERIT_PERC - fraction of inequalities to inherit
  • SDP_SOLVER_EPS_INEQ - tolerance for checking the violation of the inequalities
  • SDP_SOLVER_EPS_ACTIVE - tolerance for detecting the active inequalities
  • SDP_SOLVER_MAX_PAIR_INEQ - maximum number of pair inequalities to separate
  • SDP_SOLVER_PAIR_PERC - fraction of the most violated pair inequalities to add
  • SDP_SOLVER_MAX_TRIANGLE_INEQ - maximum number of triangle inequalities to separate
  • SDP_SOLVER_TRIANGLE_PERC - fraction of the most violated triangle inequalities to add

Usage

cd clustering_c++/
./bb <DATASET> <K> <CONSTRAINTS> <LOG> <RESULT>
  • DATASET - path of the dataset
  • K - number of clusters
  • CONSTRAINTS - path of the constraints
  • LOG - path of the log file
  • RESULT - path of the optimal cluster assignment matrix

File DATASET contains the data points x_ij and the must include an header line with the problem size n and the dimension d:

n d
x_11 x_12 ... x_1d
x_21 x_22 ... x_2d
...
...
x_n1 x_n2 ... x_nd

File CONSTRAINTS should include indices (i, j) of the data points involved in must-link (ML) and/or cannot-link (CL) constraints:

CL i1 j1
CL i2 j2
...
...
ML i3 j3
ML i4 j4

If it does not contain any constraint (empty file), PC-SOS-SDP becomes SOS-SDP (the exact solver for unsupervised MSSC).

Log

The log file reports the progress of the algorithm:

  • N - size of the current node
  • NODE_PAR - id of the parent node
  • NODE - id of the current node
  • LB_PAR - lower bound of the parent node
  • LB - lower bound of the current node
  • FLAG - termination flag of SDPNAL+
    • 0 - SDP is solved to the required accuracy
    • 1 - SDP is not solved successfully
    • -1, -2, -3 - SDP is partially solved successfully
  • TIME (s) - running time in seconds of the current node
  • CP_ITER - number of cutting-plane iterations
  • CP_FLAG - termination flag of the cutting-plane procedure
    • -3 - current bound is worse than the previous one
    • -2 - SDP is not solved successfully
    • -1 - maximum number of iterations
    • 0 - no violated inequalities
    • 1 - maximum number of inequalities
    • 2 - node must be pruned
    • 3 - cutting-plane tolerance
  • CP_INEQ - number of inequalities added in the last cutting-plane iteration
  • PAIR TRIANGLE CLIQUE - average number of added cuts for each class of inequalities
  • UB - current upper bound
  • GUB - global upper bound
  • I J - current branching decision
  • NODE_GAP - gap at the current node
  • GAP - overall gap
  • OPEN - number of open nodes

Log file example:

DATA_PATH, n, d, k: /home/ubuntu/PC-SOS-SDP/instances/glass.txt 214 9 6
CONSTRAINTS_PATH: /home/ubuntu/PC-SOS-SDP/instances/constraints/glass/ml_50_cl_50_3.txt
LOG_PATH: /home/ubuntu/PC-SOS_SDP/logs/glass/log_ml_50_cl_50_3.txt

BRANCH_AND_BOUND_TOL: 1e-4
BRANCH_AND_BOUND_PARALLEL: 16
BRANCH_AND_BOUND_MAX_NODES: 200
BRANCH_AND_BOUND_VISITING_STRATEGY: 0

SDP_SOLVER_SESSION_THREADS_ROOT: 16
SDP_SOLVER_SESSION_THREADS: 1
SDP_SOLVER_FOLDER: /home/ubuntu/PC-SOS-SDP/SDPNAL+/
SDP_SOLVER_TOL: 1e-05
SDP_SOLVER_VERBOSE: 0
SDP_SOLVER_MAX_CP_ITER_ROOT: 80
SDP_SOLVER_MAX_CP_ITER: 40
SDP_SOLVER_CP_TOL: 1e-06
SDP_SOLVER_MAX_INEQ: 100000
SDP_SOLVER_INHERIT_PERC: 1
SDP_SOLVER_EPS_INEQ: 0.0001
SDP_SOLVER_EPS_ACTIVE: 1e-06
SDP_SOLVER_MAX_PAIR_INEQ: 100000
SDP_SOLVER_PAIR_PERC: 0.05
SDP_SOLVER_MAX_TRIANGLE_INEQ: 100000
SDP_SOLVER_TRIANGLE_PERC: 0.05


|    N| NODE_PAR|    NODE|      LB_PAR|          LB|  FLAG|  TIME (s)| CP_ITER| CP_FLAG|   CP_INEQ|     PAIR  TRIANGLE    CLIQUE|          UB|         GUB|     I      J|     NODE_GAP|          GAP|  OPEN|
|  164|       -1|       0|        -inf|     93.3876|     0|       110|       7|      -3|      6456|  242.571      4802   8.14286|     93.5225|    93.5225*|    -1     -1|   0.00144229|   0.00144229|     0|
|  163|        0|       1|     93.3876|     93.4388|     0|        35|       2|      -3|      5958|        1      3675         0|     93.4777|    93.4777*|    79    142|  0.000416211|  0.000416211|     0|
|  164|        0|       2|     93.3876|     93.4494|     0|        47|       2|      -3|      6888|        0      4635         0|     93.5225|     93.4777|    79    142|  0.000302427|  0.000302427|     0|
|  162|        1|       3|     93.4388|      93.506|     0|        27|       1|       2|      6258|        9      3759         0|         inf|     93.4777|   119    152| -0.000302724| -0.000302724|     0|
|  163|        1|       4|     93.4388|     93.4536|     0|        47|       4|      -3|      3336|        0      1789         0|     93.4777|     93.4777|   119    152|   0.00025747|   0.00025747|     0|
|  164|        2|       5|     93.4494|     93.4549|     0|        37|       1|      -3|      6888|        0      5000         0|     93.5225|     93.4777|    47     54|  0.000243844|  0.000243844|     0|
|  163|        2|       6|     93.4494|     93.4708|     0|        51|       2|       2|      7292|       11      4693         0|     93.5559|     93.4777|    47     54|  7.36443e-05|  7.36443e-05|     0|
|  164|        5|       7|     93.4549|      93.475|     0|        22|       0|       2|      6888|        0         0         0|     93.5225|     93.4777|   122    153|  2.82805e-05|  2.82805e-05|     0|
|  163|        4|       8|     93.4536|     93.4536|     0|        38|       2|      -3|      3257|        0     668.5         0|     93.4704|    93.4704*|    47     54|  0.000180057|  0.000180057|     0|
|  163|        5|       9|     93.4549|     93.5216|     0|        41|       1|       2|      6893|        8      5000         0|         inf|     93.4704|   122    153| -0.000547847| -0.000547847|     0|
|  163|        8|      10|     93.4536|     93.4536|     0|        27|       1|      -3|      3257|        0       879         0|     93.4704|     93.4704|    37     45|  0.000180057|  0.000180057|     0|
|  162|        8|      11|     93.4536|     93.4838|     0|        33|       1|       2|      6158|       24      4233         0|         inf|     93.4704|    37     45| -0.000143677| -0.000143677|     0|
|  162|        4|      12|     93.4536|     93.4658|     0|        75|       5|      -3|      2793|      4.6      2379         0|     93.5111|     93.4704|    47     54|  4.89954e-05|  4.89954e-05|     0|
|  162|       10|      13|     93.4536|     93.5053|     0|        19|       0|       2|      3122|        0         0         0|         inf|     93.4704|    37     99|  -0.00037365|  -0.00037365|     0|
|  163|       10|      14|     93.4536|     93.4701|     0|        31|       0|       2|      3257|        0         0         0|     93.4704|     93.4704|    37     99|  3.13989e-06|  3.13989e-06|     0|

WALL_TIME: 304 sec
N_NODES: 15
AVG_INEQ: 2788.05
AVG_CP_ITER: 1.93333
ROOT_GAP: 0.00144229
GAP: 0
BEST: 93.4704
Owner
Antonio M. Sudoso
Antonio M. Sudoso
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022