Fine-tuning StyleGAN2 for Cartoon Face Generation

Overview

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Abstract

Recent studies have shown remarkable success in the unsupervised image to image (I2I) translation. However, due to the imbalance in the data, learning joint distribution for various domains is still very challenging. Although existing models can generate realistic target images, it’s difficult to maintain the structure of the source image. In addition, training a generative model on large data in multiple domains requires a lot of time and computer resources. To address these limitations, I propose a novel image-to-image translation method that generates images of the target domain by finetuning a stylegan2 pretrained model. The stylegan2 model is suitable for unsupervised I2I translation on unbalanced datasets; it is highly stable, produces realistic images, and even learns properly from limited data when applied with simple fine-tuning techniques. Thus, in this project, I propose new methods to preserve the structure of the source images and generate realistic images in the target domain.

Inference Notebook

🎉 You can do this task in colab ! : Open In Colab

Arxiv arXiv

[NEW!] 2021.08.30 Streamlit Ver


1. Method

Baseline : StyleGAN2-ADA + FreezeD

It generates realistic images, but does not maintain the structure of the source domain.

Ours : FreezeSG (Freeze Style vector and Generator)

FreezeG is effective in maintaining the structure of the source image. As a result of various experiments, I found that not only the initial layer of the generator but also the initial layer of the style vector are important for maintaining the structure. Thus, I froze the low-resolution layer of both the generator and the style vector.

Freeze Style vector and Generator

Results

With Layer Swapping

When LS is applied, the generated images by FreezeSG have a higher similarity to the source image than when FreezeG or the baseline (FreezeD + ADA) were used. However, since this fixes the weights of the low-resolution layer of the generator, it is difficult to obtain meaningful results when layer swapping on the low-resolution layer.

Ours : Structure Loss

Based on the fact that the structure of the image is determined at low resolution, I apply structure loss to the values of the low-resolution layer so that the generated image is similar to the image in the source domain. The structure loss makes the RGB output of the source generator to be fine-tuned to have a similar value with the RGB output of the target generator during training.

Results

Compare


2. Application : Change Facial Expression / Pose

I applied various models(ex. Indomain-GAN, SeFa, StyleCLIP…) to change facial expression, posture, style, etc.

(1) Closed Form Factorization(SeFa)

Pose

Slim Face

(2) StyleCLIP – Latent Optimization

Inspired by StyleCLIP that manipulates generated images with text, I change the faces of generated cartoon characters by text. I used the latent optimization method among the three methods of StyleCLIP and additionally introduced styleclip strength. It allows the latent vector to linearly move in the direction of the optimized latent vector, making the image change better with text.

with baseline model(FreezeD)

with our model(structureLoss)

(3) Style Mixing

Style-Mixing

When mixing layers, I found specifics layers that make a face. While the overall structure (hair style, facial shape, etc.) and texture (skin color and texture) were maintained, only the face(eyes, nose and mouth) was changed.

Results


3. Requirements

I have tested on:

Installation

Clone this repo :

git clone https://github.com/happy-jihye/Cartoon-StyleGan2
cd Cartoon-StyleGan2

Pretrained Models

Please download the pre-trained models from the following links.

Path Description
StyleGAN2-FFHQ256 StyleGAN2 pretrained model(256px) with FFHQ dataset from Rosinality
StyleGAN2-Encoder In-Domain GAN Inversion model with FFHQ dataset from Bryandlee
NaverWebtoon FreezeD + ADA with NaverWebtoon Dataset
NaverWebtoon_FreezeSG FreezeSG with NaverWebtoon Dataset
NaverWebtoon_StructureLoss StructureLoss with NaverWebtoon Dataset
Romance101 FreezeD + ADA with Romance101 Dataset
TrueBeauty FreezeD + ADA with TrueBeauty Dataset
Disney FreezeD + ADA with Disney Dataset
Disney_FreezeSG FreezeSG with Disney Dataset
Disney_StructureLoss StructureLoss with Disney Dataset
Metface_FreezeSG FreezeSG with Metface Dataset
Metface_StructureLoss StructureLoss with Metface Dataset

If you want to download all of the pretrained model, you can use download_pretrained_model() function in utils.py.

Dataset

I experimented with a variety of datasets, including Naver Webtoon, Metfaces, and Disney.

NaverWebtoon Dataset contains facial images of webtoon characters serialized on Naver. I made this dataset by crawling webtoons from Naver’s webtoons site and cropping the faces to 256 x 256 sizes. There are about 15 kinds of webtoons and 8,000 images(not aligned). I trained the entire Naver Webtoon dataset, and I also trained each webtoon in this experiment

I was also allowed to share a pretrained model with writers permission to use datasets. Thank you for the writers (Yaongyi, Namsoo, justinpinkney) who gave us permission.

Getting Started !

1. Prepare LMDB Dataset

First create lmdb datasets:

python prepare_data.py --out LMDB_PATH --n_worker N_WORKER --size SIZE1,SIZE2,SIZE3,... DATASET_PATH

# if you have zip file, change it to lmdb datasets by this commend
python run.py --prepare_data=DATASET_PATH --zip=ZIP_NAME --size SIZE

2. Train

# StyleGAN2
python train.py --batch BATCH_SIZE LMDB_PATH
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --freezeG=4 --freezeD=3 --augment --path=LMDB_PATH

# StructureLoss
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --structure_loss=2 --freezeD=3 --augment --path=LMDB_PATH

# FreezeSG
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --freezeStyle=2 --freezeG=4 --freezeD=3 --augment --path=LMDB_PATH


# Distributed Settings
python train.py --batch BATCH_SIZE --path LMDB_PATH \
    -m torch.distributed.launch --nproc_per_node=N_GPU --main_port=PORT

Options

  1. Project images to latent spaces

    python projector.py --ckpt [CHECKPOINT] --size [GENERATOR_OUTPUT_SIZE] FILE1 FILE2 ...
    
  2. Closed-Form Factorization

    You can use closed_form_factorization.py and apply_factor.py to discover meaningful latent semantic factor or directions in unsupervised manner.

    First, you need to extract eigenvectors of weight matrices using closed_form_factorization.py

    python closed_form_factorization.py [CHECKPOINT]
    

    This will create factor file that contains eigenvectors. (Default: factor.pt) And you can use apply_factor.py to test the meaning of extracted directions

    python apply_factor.py -i [INDEX_OF_EIGENVECTOR] -d [DEGREE_OF_MOVE] -n [NUMBER_OF_SAMPLES] --ckpt [CHECKPOINT] [FACTOR_FILE]
    # ex) python apply_factor.py -i 19 -d 5 -n 10 --ckpt [CHECKPOINT] factor.pt
    

StyleGAN2-ada + FreezeD

During the experiment, I also carried out a task to generate a cartoon image based on Nvidia Team's StyleGAN2-ada code. When training these models, I didn't control the dataset resolution(256px) 😂 . So the quality of the generated image can be broken.

You can practice based on this code at Colab : Open In Colab

Generated-Image Interpolation

Reference

Owner
Jihye Back
Jihye Back
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022