Fine-tuning StyleGAN2 for Cartoon Face Generation

Overview

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Abstract

Recent studies have shown remarkable success in the unsupervised image to image (I2I) translation. However, due to the imbalance in the data, learning joint distribution for various domains is still very challenging. Although existing models can generate realistic target images, it’s difficult to maintain the structure of the source image. In addition, training a generative model on large data in multiple domains requires a lot of time and computer resources. To address these limitations, I propose a novel image-to-image translation method that generates images of the target domain by finetuning a stylegan2 pretrained model. The stylegan2 model is suitable for unsupervised I2I translation on unbalanced datasets; it is highly stable, produces realistic images, and even learns properly from limited data when applied with simple fine-tuning techniques. Thus, in this project, I propose new methods to preserve the structure of the source images and generate realistic images in the target domain.

Inference Notebook

🎉 You can do this task in colab ! : Open In Colab

Arxiv arXiv

[NEW!] 2021.08.30 Streamlit Ver


1. Method

Baseline : StyleGAN2-ADA + FreezeD

It generates realistic images, but does not maintain the structure of the source domain.

Ours : FreezeSG (Freeze Style vector and Generator)

FreezeG is effective in maintaining the structure of the source image. As a result of various experiments, I found that not only the initial layer of the generator but also the initial layer of the style vector are important for maintaining the structure. Thus, I froze the low-resolution layer of both the generator and the style vector.

Freeze Style vector and Generator

Results

With Layer Swapping

When LS is applied, the generated images by FreezeSG have a higher similarity to the source image than when FreezeG or the baseline (FreezeD + ADA) were used. However, since this fixes the weights of the low-resolution layer of the generator, it is difficult to obtain meaningful results when layer swapping on the low-resolution layer.

Ours : Structure Loss

Based on the fact that the structure of the image is determined at low resolution, I apply structure loss to the values of the low-resolution layer so that the generated image is similar to the image in the source domain. The structure loss makes the RGB output of the source generator to be fine-tuned to have a similar value with the RGB output of the target generator during training.

Results

Compare


2. Application : Change Facial Expression / Pose

I applied various models(ex. Indomain-GAN, SeFa, StyleCLIP…) to change facial expression, posture, style, etc.

(1) Closed Form Factorization(SeFa)

Pose

Slim Face

(2) StyleCLIP – Latent Optimization

Inspired by StyleCLIP that manipulates generated images with text, I change the faces of generated cartoon characters by text. I used the latent optimization method among the three methods of StyleCLIP and additionally introduced styleclip strength. It allows the latent vector to linearly move in the direction of the optimized latent vector, making the image change better with text.

with baseline model(FreezeD)

with our model(structureLoss)

(3) Style Mixing

Style-Mixing

When mixing layers, I found specifics layers that make a face. While the overall structure (hair style, facial shape, etc.) and texture (skin color and texture) were maintained, only the face(eyes, nose and mouth) was changed.

Results


3. Requirements

I have tested on:

Installation

Clone this repo :

git clone https://github.com/happy-jihye/Cartoon-StyleGan2
cd Cartoon-StyleGan2

Pretrained Models

Please download the pre-trained models from the following links.

Path Description
StyleGAN2-FFHQ256 StyleGAN2 pretrained model(256px) with FFHQ dataset from Rosinality
StyleGAN2-Encoder In-Domain GAN Inversion model with FFHQ dataset from Bryandlee
NaverWebtoon FreezeD + ADA with NaverWebtoon Dataset
NaverWebtoon_FreezeSG FreezeSG with NaverWebtoon Dataset
NaverWebtoon_StructureLoss StructureLoss with NaverWebtoon Dataset
Romance101 FreezeD + ADA with Romance101 Dataset
TrueBeauty FreezeD + ADA with TrueBeauty Dataset
Disney FreezeD + ADA with Disney Dataset
Disney_FreezeSG FreezeSG with Disney Dataset
Disney_StructureLoss StructureLoss with Disney Dataset
Metface_FreezeSG FreezeSG with Metface Dataset
Metface_StructureLoss StructureLoss with Metface Dataset

If you want to download all of the pretrained model, you can use download_pretrained_model() function in utils.py.

Dataset

I experimented with a variety of datasets, including Naver Webtoon, Metfaces, and Disney.

NaverWebtoon Dataset contains facial images of webtoon characters serialized on Naver. I made this dataset by crawling webtoons from Naver’s webtoons site and cropping the faces to 256 x 256 sizes. There are about 15 kinds of webtoons and 8,000 images(not aligned). I trained the entire Naver Webtoon dataset, and I also trained each webtoon in this experiment

I was also allowed to share a pretrained model with writers permission to use datasets. Thank you for the writers (Yaongyi, Namsoo, justinpinkney) who gave us permission.

Getting Started !

1. Prepare LMDB Dataset

First create lmdb datasets:

python prepare_data.py --out LMDB_PATH --n_worker N_WORKER --size SIZE1,SIZE2,SIZE3,... DATASET_PATH

# if you have zip file, change it to lmdb datasets by this commend
python run.py --prepare_data=DATASET_PATH --zip=ZIP_NAME --size SIZE

2. Train

# StyleGAN2
python train.py --batch BATCH_SIZE LMDB_PATH
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --freezeG=4 --freezeD=3 --augment --path=LMDB_PATH

# StructureLoss
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --structure_loss=2 --freezeD=3 --augment --path=LMDB_PATH

# FreezeSG
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --freezeStyle=2 --freezeG=4 --freezeD=3 --augment --path=LMDB_PATH


# Distributed Settings
python train.py --batch BATCH_SIZE --path LMDB_PATH \
    -m torch.distributed.launch --nproc_per_node=N_GPU --main_port=PORT

Options

  1. Project images to latent spaces

    python projector.py --ckpt [CHECKPOINT] --size [GENERATOR_OUTPUT_SIZE] FILE1 FILE2 ...
    
  2. Closed-Form Factorization

    You can use closed_form_factorization.py and apply_factor.py to discover meaningful latent semantic factor or directions in unsupervised manner.

    First, you need to extract eigenvectors of weight matrices using closed_form_factorization.py

    python closed_form_factorization.py [CHECKPOINT]
    

    This will create factor file that contains eigenvectors. (Default: factor.pt) And you can use apply_factor.py to test the meaning of extracted directions

    python apply_factor.py -i [INDEX_OF_EIGENVECTOR] -d [DEGREE_OF_MOVE] -n [NUMBER_OF_SAMPLES] --ckpt [CHECKPOINT] [FACTOR_FILE]
    # ex) python apply_factor.py -i 19 -d 5 -n 10 --ckpt [CHECKPOINT] factor.pt
    

StyleGAN2-ada + FreezeD

During the experiment, I also carried out a task to generate a cartoon image based on Nvidia Team's StyleGAN2-ada code. When training these models, I didn't control the dataset resolution(256px) 😂 . So the quality of the generated image can be broken.

You can practice based on this code at Colab : Open In Colab

Generated-Image Interpolation

Reference

Owner
Jihye Back
Jihye Back
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Gym environment for FLIPIT: The Game of "Stealthy Takeover"

gym-flipit Gym environment for FLIPIT: The Game of "Stealthy Takeover" invented by Marten van Dijk, Ari Juels, Alina Oprea, and Ronald L. Rivest. Desi

Lisa Oakley 2 Dec 15, 2021
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023