Fine-tuning StyleGAN2 for Cartoon Face Generation

Overview

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Abstract

Recent studies have shown remarkable success in the unsupervised image to image (I2I) translation. However, due to the imbalance in the data, learning joint distribution for various domains is still very challenging. Although existing models can generate realistic target images, it’s difficult to maintain the structure of the source image. In addition, training a generative model on large data in multiple domains requires a lot of time and computer resources. To address these limitations, I propose a novel image-to-image translation method that generates images of the target domain by finetuning a stylegan2 pretrained model. The stylegan2 model is suitable for unsupervised I2I translation on unbalanced datasets; it is highly stable, produces realistic images, and even learns properly from limited data when applied with simple fine-tuning techniques. Thus, in this project, I propose new methods to preserve the structure of the source images and generate realistic images in the target domain.

Inference Notebook

🎉 You can do this task in colab ! : Open In Colab

Arxiv arXiv

[NEW!] 2021.08.30 Streamlit Ver


1. Method

Baseline : StyleGAN2-ADA + FreezeD

It generates realistic images, but does not maintain the structure of the source domain.

Ours : FreezeSG (Freeze Style vector and Generator)

FreezeG is effective in maintaining the structure of the source image. As a result of various experiments, I found that not only the initial layer of the generator but also the initial layer of the style vector are important for maintaining the structure. Thus, I froze the low-resolution layer of both the generator and the style vector.

Freeze Style vector and Generator

Results

With Layer Swapping

When LS is applied, the generated images by FreezeSG have a higher similarity to the source image than when FreezeG or the baseline (FreezeD + ADA) were used. However, since this fixes the weights of the low-resolution layer of the generator, it is difficult to obtain meaningful results when layer swapping on the low-resolution layer.

Ours : Structure Loss

Based on the fact that the structure of the image is determined at low resolution, I apply structure loss to the values of the low-resolution layer so that the generated image is similar to the image in the source domain. The structure loss makes the RGB output of the source generator to be fine-tuned to have a similar value with the RGB output of the target generator during training.

Results

Compare


2. Application : Change Facial Expression / Pose

I applied various models(ex. Indomain-GAN, SeFa, StyleCLIP…) to change facial expression, posture, style, etc.

(1) Closed Form Factorization(SeFa)

Pose

Slim Face

(2) StyleCLIP – Latent Optimization

Inspired by StyleCLIP that manipulates generated images with text, I change the faces of generated cartoon characters by text. I used the latent optimization method among the three methods of StyleCLIP and additionally introduced styleclip strength. It allows the latent vector to linearly move in the direction of the optimized latent vector, making the image change better with text.

with baseline model(FreezeD)

with our model(structureLoss)

(3) Style Mixing

Style-Mixing

When mixing layers, I found specifics layers that make a face. While the overall structure (hair style, facial shape, etc.) and texture (skin color and texture) were maintained, only the face(eyes, nose and mouth) was changed.

Results


3. Requirements

I have tested on:

Installation

Clone this repo :

git clone https://github.com/happy-jihye/Cartoon-StyleGan2
cd Cartoon-StyleGan2

Pretrained Models

Please download the pre-trained models from the following links.

Path Description
StyleGAN2-FFHQ256 StyleGAN2 pretrained model(256px) with FFHQ dataset from Rosinality
StyleGAN2-Encoder In-Domain GAN Inversion model with FFHQ dataset from Bryandlee
NaverWebtoon FreezeD + ADA with NaverWebtoon Dataset
NaverWebtoon_FreezeSG FreezeSG with NaverWebtoon Dataset
NaverWebtoon_StructureLoss StructureLoss with NaverWebtoon Dataset
Romance101 FreezeD + ADA with Romance101 Dataset
TrueBeauty FreezeD + ADA with TrueBeauty Dataset
Disney FreezeD + ADA with Disney Dataset
Disney_FreezeSG FreezeSG with Disney Dataset
Disney_StructureLoss StructureLoss with Disney Dataset
Metface_FreezeSG FreezeSG with Metface Dataset
Metface_StructureLoss StructureLoss with Metface Dataset

If you want to download all of the pretrained model, you can use download_pretrained_model() function in utils.py.

Dataset

I experimented with a variety of datasets, including Naver Webtoon, Metfaces, and Disney.

NaverWebtoon Dataset contains facial images of webtoon characters serialized on Naver. I made this dataset by crawling webtoons from Naver’s webtoons site and cropping the faces to 256 x 256 sizes. There are about 15 kinds of webtoons and 8,000 images(not aligned). I trained the entire Naver Webtoon dataset, and I also trained each webtoon in this experiment

I was also allowed to share a pretrained model with writers permission to use datasets. Thank you for the writers (Yaongyi, Namsoo, justinpinkney) who gave us permission.

Getting Started !

1. Prepare LMDB Dataset

First create lmdb datasets:

python prepare_data.py --out LMDB_PATH --n_worker N_WORKER --size SIZE1,SIZE2,SIZE3,... DATASET_PATH

# if you have zip file, change it to lmdb datasets by this commend
python run.py --prepare_data=DATASET_PATH --zip=ZIP_NAME --size SIZE

2. Train

# StyleGAN2
python train.py --batch BATCH_SIZE LMDB_PATH
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --freezeG=4 --freezeD=3 --augment --path=LMDB_PATH

# StructureLoss
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --structure_loss=2 --freezeD=3 --augment --path=LMDB_PATH

# FreezeSG
# ex) python train.py --batch=8 --ckpt=ffhq256.pt --freezeStyle=2 --freezeG=4 --freezeD=3 --augment --path=LMDB_PATH


# Distributed Settings
python train.py --batch BATCH_SIZE --path LMDB_PATH \
    -m torch.distributed.launch --nproc_per_node=N_GPU --main_port=PORT

Options

  1. Project images to latent spaces

    python projector.py --ckpt [CHECKPOINT] --size [GENERATOR_OUTPUT_SIZE] FILE1 FILE2 ...
    
  2. Closed-Form Factorization

    You can use closed_form_factorization.py and apply_factor.py to discover meaningful latent semantic factor or directions in unsupervised manner.

    First, you need to extract eigenvectors of weight matrices using closed_form_factorization.py

    python closed_form_factorization.py [CHECKPOINT]
    

    This will create factor file that contains eigenvectors. (Default: factor.pt) And you can use apply_factor.py to test the meaning of extracted directions

    python apply_factor.py -i [INDEX_OF_EIGENVECTOR] -d [DEGREE_OF_MOVE] -n [NUMBER_OF_SAMPLES] --ckpt [CHECKPOINT] [FACTOR_FILE]
    # ex) python apply_factor.py -i 19 -d 5 -n 10 --ckpt [CHECKPOINT] factor.pt
    

StyleGAN2-ada + FreezeD

During the experiment, I also carried out a task to generate a cartoon image based on Nvidia Team's StyleGAN2-ada code. When training these models, I didn't control the dataset resolution(256px) 😂 . So the quality of the generated image can be broken.

You can practice based on this code at Colab : Open In Colab

Generated-Image Interpolation

Reference

Owner
Jihye Back
Jihye Back
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021