Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

Overview

CLIP-Guided-Diffusion

Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

Original colab notebooks by Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings):

  • Original 256x256 notebook: Open In Colab

It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion)

  • Original 512x512 notebook: Open In Colab

It uses a 512x512 unconditional ImageNet diffusion model fine-tuned from OpenAI's 512x512 class-conditional ImageNet diffusion model (https://github.com/openai/guided-diffusion)

Together with CLIP (https://github.com/openai/CLIP), they connect text prompts with images.

Either the 256 or 512 model can be used here (by setting --output_size to either 256 or 512)

Some example images:

"A woman standing in a park":

"An alien landscape":

"A painting of a man":

*images enhanced with Real-ESRGAN

You may also be interested in VQGAN-CLIP

Environment

  • Ubuntu 20.04 (Windows untested but should work)
  • Anaconda
  • Nvidia RTX 3090

Typical VRAM requirments:

  • 256 defaults: 10 GB
  • 512 defaults: 18 GB

Set up

This example uses Anaconda to manage virtual Python environments.

Create a new virtual Python environment for CLIP-Guided-Diffusion:

conda create --name cgd python=3.9
conda activate cgd

Download and change directory:

git clone https://github.com/nerdyrodent/CLIP-Guided-Diffusion.git
cd CLIP-Guided-Diffusion

Run the setup file:

./setup.sh

Or if you want to run the commands manually:

# Install dependencies

pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
git clone https://github.com/openai/CLIP
git clone https://github.com/crowsonkb/guided-diffusion
pip install -e ./CLIP
pip install -e ./guided-diffusion
pip install lpips matplotlib

# Download the diffusion models

curl -OL --http1.1 'https://the-eye.eu/public/AI/models/512x512_diffusion_unconditional_ImageNet/512x512_diffusion_uncond_finetune_008100.pt'
curl -OL 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt'

Run

The simplest way to run is just to pass in your text prompt. For example:

python generate_diffuse.py -p "A painting of an apple"

Multiple prompts

Text and image prompts can be split using the pipe symbol in order to allow multiple prompts. You can also use a colon followed by a number to set a weight for that prompt. For example:

python generate_diffuse.py -p "A painting of an apple:1.5|a surreal painting of a weird apple:0.5"

Other options

There are a variety of other options to play with. Use help to display them:

python generate_diffuse.py -h
usage: generate_diffuse.py [-h] [-p PROMPTS] [-ip IMAGE_PROMPTS] [-ii INIT_IMAGE]
[-st SKIP_TIMESTEPS] [-is INIT_SCALE] [-m CLIP_MODEL] [-t TIMESTEPS]
[-ds DIFFUSION_STEPS] [-se SAVE_EVERY] [-bs BATCH_SIZE] [-nb N_BATCHES] [-cuts CUTN]
[-cutb CUTN_BATCHES] [-cutp CUT_POW] [-cgs CLIP_GUIDANCE_SCALE]
[-tvs TV_SCALE] [-rgs RANGE_SCALE] [-os IMAGE_SIZE] [-s SEED] [-o OUTPUT] [-nfp] [-pl]

init_image

  • 'skip_timesteps' needs to be between approx. 200 and 500 when using an init image.
  • 'init_scale' enhances the effect of the init image, a good value is 1000.

timesteps

The number of timesteps, or one of ddim25, ddim50, ddim150, ddim250, ddim500, ddim1000. Must go into diffusion_steps.

image guidance

  • 'clip_guidance_scale' Controls how much the image should look like the prompt.
  • 'tv_scale' Controls the smoothness of the final output.
  • 'range_scale' Controls how far out of range RGB values are allowed to be.

Examples using a number of options:

python generate_diffuse.py -p "An amazing fractal" -os=256 -cgs=1000 -tvs=50 -rgs=50 -cuts=16 -cutb=4 -t=200 -se=200 -m=ViT-B/32 -o=my_fractal.png

python generate_diffuse.py -p "An impressionist painting of a cat:1.75|trending on artstation:0.25" -cgs=500 -tvs=55 -rgs=50 -cuts=16 -cutb=2 -t=100 -ds=2000 -m=ViT-B/32 -pl -o=cat_100.png

(Funny looking cat, but hey!)

Other repos

You may also be interested in https://github.com/afiaka87/clip-guided-diffusion

For upscaling images, try https://github.com/xinntao/Real-ESRGAN

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
Owner
Nerdy Rodent
Just a nerdy rodent. I do arty stuff with computers.
Nerdy Rodent
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022