Flaxformer: transformer architectures in JAX/Flax

Overview

Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used for many NLP research use cases, providing both off-the-shelf BERT and T5 models, and several research projects built on shared components.

General library goals

The Flaxformer library aims to provide transformer models that are:

  • High performance: Models are annotated for use with the PJIT API, enabling them to be used for training the largest models.
  • Reusable: Components have self-contained configuration, and high-level modules like encoders, decoders, etc. don't make too many assumptions about what their sub-modules look like.
  • Tested: We aim to employ a reasonable amount of unit testing, and write tests whenever bugs are encountered. However no guarantees are provided.
  • Maintainble: We have created a versioning strategy for our modules so code refactors can take place which alter the module structure. This is tricky in Flax, because Flax generates a tree of parameters based on the exact module structure. Our approach lets us maintain compatibility with previously trained model checkpoints.

Code locations

Modeling components such as dense attention, layer norms, and MLP blocks can be found in the components/ directory.

Higher-level classes which combine these components can be found in the architectures/ directory. The current architecture file for the T5 family of models is architectures/t5/t5_architecture.py; this is a mid-level API requiring sub-components to be configured. A high-level starting point, exposing fewer parameters, is architectures/t5/t5_1_1.py.

Relationship to other codebases

Flaxformer is primarily used by other research projects, in particular T5X. We hope to release examples demonstrating the integration of these codebases soon.

If you would like to use Flaxformer independently of T5X, please see the unit tests for examples instantiating the models. In the medium-term future, we hope to provide more stand-alone examples of Flaxformer use.

Contributions

Unfortunately, we cannot accept contributions to the Flaxformer repo at this time, so any pull requests will be automatically closed - but please file issues as needed!

Installing dependencies and running tests

After checking out this repository, in its root directory, you can install it along with test dependencies by running,

pip3 install '.[testing]'

If you like, you can run the tests from pytest with the following invocation,

python3 -m pytest

Uninstalling

If you need to uninstall Flaxformer, please run,

pip3 uninstall flaxformer

Troubleshooting

Flax deps

Flaxformer is developed in close collaboration with the Flax team. There may be bugs if your Flax version is not up to date. To install the latest version from GitHub, please run,

pip3 uninstall flax
pip3 install git+https://github.com/google/flax

Note

Flaxformer is a project maintained by a team in Google Research. It is not an official Google product.

Owner
Google
Google ❤️ Open Source
Google
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
Facebook Research 605 Jan 02, 2023
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022