Flaxformer: transformer architectures in JAX/Flax

Overview

Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used for many NLP research use cases, providing both off-the-shelf BERT and T5 models, and several research projects built on shared components.

General library goals

The Flaxformer library aims to provide transformer models that are:

  • High performance: Models are annotated for use with the PJIT API, enabling them to be used for training the largest models.
  • Reusable: Components have self-contained configuration, and high-level modules like encoders, decoders, etc. don't make too many assumptions about what their sub-modules look like.
  • Tested: We aim to employ a reasonable amount of unit testing, and write tests whenever bugs are encountered. However no guarantees are provided.
  • Maintainble: We have created a versioning strategy for our modules so code refactors can take place which alter the module structure. This is tricky in Flax, because Flax generates a tree of parameters based on the exact module structure. Our approach lets us maintain compatibility with previously trained model checkpoints.

Code locations

Modeling components such as dense attention, layer norms, and MLP blocks can be found in the components/ directory.

Higher-level classes which combine these components can be found in the architectures/ directory. The current architecture file for the T5 family of models is architectures/t5/t5_architecture.py; this is a mid-level API requiring sub-components to be configured. A high-level starting point, exposing fewer parameters, is architectures/t5/t5_1_1.py.

Relationship to other codebases

Flaxformer is primarily used by other research projects, in particular T5X. We hope to release examples demonstrating the integration of these codebases soon.

If you would like to use Flaxformer independently of T5X, please see the unit tests for examples instantiating the models. In the medium-term future, we hope to provide more stand-alone examples of Flaxformer use.

Contributions

Unfortunately, we cannot accept contributions to the Flaxformer repo at this time, so any pull requests will be automatically closed - but please file issues as needed!

Installing dependencies and running tests

After checking out this repository, in its root directory, you can install it along with test dependencies by running,

pip3 install '.[testing]'

If you like, you can run the tests from pytest with the following invocation,

python3 -m pytest

Uninstalling

If you need to uninstall Flaxformer, please run,

pip3 uninstall flaxformer

Troubleshooting

Flax deps

Flaxformer is developed in close collaboration with the Flax team. There may be bugs if your Flax version is not up to date. To install the latest version from GitHub, please run,

pip3 uninstall flax
pip3 install git+https://github.com/google/flax

Note

Flaxformer is a project maintained by a team in Google Research. It is not an official Google product.

Owner
Google
Google ❤️ Open Source
Google
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022