Semantic Image Synthesis with SPADE

Related tags

Deep LearningSPADE
Overview

License CC BY-NC-SA 4.0 Python 3.6

Semantic Image Synthesis with SPADE

GauGAN demo

New implementation available at imaginaire repository

We have a reimplementation of the SPADE method that is more performant. It is avaiable at Imaginaire

Project page | Paper | Online Interactive Demo of GauGAN | GTC 2019 demo | Youtube Demo of GauGAN

Semantic Image Synthesis with Spatially-Adaptive Normalization.
Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu.
In CVPR 2019 (Oral).

License

Copyright (C) 2019 NVIDIA Corporation.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use or business inquiries, please contact [email protected].

For press and other inquiries, please contact Hector Marinez

Installation

Clone this repo.

git clone https://github.com/NVlabs/SPADE.git
cd SPADE/

This code requires PyTorch 1.0 and python 3+. Please install dependencies by

pip install -r requirements.txt

This code also requires the Synchronized-BatchNorm-PyTorch rep.

cd models/networks/
git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
cd ../../

To reproduce the results reported in the paper, you would need an NVIDIA DGX1 machine with 8 V100 GPUs.

Dataset Preparation

For COCO-Stuff, Cityscapes or ADE20K, the datasets must be downloaded beforehand. Please download them on the respective webpages. In the case of COCO-stuff, we put a few sample images in this code repo.

Preparing COCO-Stuff Dataset. The dataset can be downloaded here. In particular, you will need to download train2017.zip, val2017.zip, stuffthingmaps_trainval2017.zip, and annotations_trainval2017.zip. The images, labels, and instance maps should be arranged in the same directory structure as in datasets/coco_stuff/. In particular, we used an instance map that combines both the boundaries of "things instance map" and "stuff label map". To do this, we used a simple script datasets/coco_generate_instance_map.py. Please install pycocotools using pip install pycocotools and refer to the script to generate instance maps.

Preparing ADE20K Dataset. The dataset can be downloaded here, which is from MIT Scene Parsing BenchMark. After unzipping the datgaset, put the jpg image files ADEChallengeData2016/images/ and png label files ADEChallengeData2016/annotatoins/ in the same directory.

There are different modes to load images by specifying --preprocess_mode along with --load_size. --crop_size. There are options such as resize_and_crop, which resizes the images into square images of side length load_size and randomly crops to crop_size. scale_shortside_and_crop scales the image to have a short side of length load_size and crops to crop_size x crop_size square. To see all modes, please use python train.py --help and take a look at data/base_dataset.py. By default at the training phase, the images are randomly flipped horizontally. To prevent this use --no_flip.

Generating Images Using Pretrained Model

Once the dataset is ready, the result images can be generated using pretrained models.

  1. Download the tar of the pretrained models from the Google Drive Folder, save it in 'checkpoints/', and run

    cd checkpoints
    tar xvf checkpoints.tar.gz
    cd ../
    
  2. Generate images using the pretrained model.

    python test.py --name [type]_pretrained --dataset_mode [dataset] --dataroot [path_to_dataset]

    [type]_pretrained is the directory name of the checkpoint file downloaded in Step 1, which should be one of coco_pretrained, ade20k_pretrained, and cityscapes_pretrained. [dataset] can be one of coco, ade20k, and cityscapes, and [path_to_dataset], is the path to the dataset. If you are running on CPU mode, append --gpu_ids -1.

  3. The outputs images are stored at ./results/[type]_pretrained/ by default. You can view them using the autogenerated HTML file in the directory.

Generating Landscape Image using GauGAN

In the paper and the demo video, we showed GauGAN, our interactive app that generates realistic landscape images from the layout users draw. The model was trained on landscape images scraped from Flickr.com. We released an online demo that has the same features. Please visit https://www.nvidia.com/en-us/research/ai-playground/. The model weights are not released.

Training New Models

New models can be trained with the following commands.

  1. Prepare dataset. To train on the datasets shown in the paper, you can download the datasets and use --dataset_mode option, which will choose which subclass of BaseDataset is loaded. For custom datasets, the easiest way is to use ./data/custom_dataset.py by specifying the option --dataset_mode custom, along with --label_dir [path_to_labels] --image_dir [path_to_images]. You also need to specify options such as --label_nc for the number of label classes in the dataset, --contain_dontcare_label to specify whether it has an unknown label, or --no_instance to denote the dataset doesn't have instance maps.

  2. Train.

# To train on the Facades or COCO dataset, for example.
python train.py --name [experiment_name] --dataset_mode facades --dataroot [path_to_facades_dataset]
python train.py --name [experiment_name] --dataset_mode coco --dataroot [path_to_coco_dataset]

# To train on your own custom dataset
python train.py --name [experiment_name] --dataset_mode custom --label_dir [path_to_labels] -- image_dir [path_to_images] --label_nc [num_labels]

There are many options you can specify. Please use python train.py --help. The specified options are printed to the console. To specify the number of GPUs to utilize, use --gpu_ids. If you want to use the second and third GPUs for example, use --gpu_ids 1,2.

To log training, use --tf_log for Tensorboard. The logs are stored at [checkpoints_dir]/[name]/logs.

Testing

Testing is similar to testing pretrained models.

python test.py --name [name_of_experiment] --dataset_mode [dataset_mode] --dataroot [path_to_dataset]

Use --results_dir to specify the output directory. --how_many will specify the maximum number of images to generate. By default, it loads the latest checkpoint. It can be changed using --which_epoch.

Code Structure

  • train.py, test.py: the entry point for training and testing.
  • trainers/pix2pix_trainer.py: harnesses and reports the progress of training.
  • models/pix2pix_model.py: creates the networks, and compute the losses
  • models/networks/: defines the architecture of all models
  • options/: creates option lists using argparse package. More individuals are dynamically added in other files as well. Please see the section below.
  • data/: defines the class for loading images and label maps.

Options

This code repo contains many options. Some options belong to only one specific model, and some options have different default values depending on other options. To address this, the BaseOption class dynamically loads and sets options depending on what model, network, and datasets are used. This is done by calling the static method modify_commandline_options of various classes. It takes in theparser of argparse package and modifies the list of options. For example, since COCO-stuff dataset contains a special label "unknown", when COCO-stuff dataset is used, it sets --contain_dontcare_label automatically at data/coco_dataset.py. You can take a look at def gather_options() of options/base_options.py, or models/network/__init__.py to get a sense of how this works.

VAE-Style Training with an Encoder For Style Control and Multi-Modal Outputs

To train our model along with an image encoder to enable multi-modal outputs as in Figure 15 of the paper, please use --use_vae. The model will create netE in addition to netG and netD and train with KL-Divergence loss.

Citation

If you use this code for your research, please cite our papers.

@inproceedings{park2019SPADE,
  title={Semantic Image Synthesis with Spatially-Adaptive Normalization},
  author={Park, Taesung and Liu, Ming-Yu and Wang, Ting-Chun and Zhu, Jun-Yan},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

Acknowledgments

This code borrows heavily from pix2pixHD. We thank Jiayuan Mao for his Synchronized Batch Normalization code.

Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022