Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

Overview

line scanning repository

plot

This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza Centre for Neuroimaging in Amsterdam. The script master controls the modules prefixed by spinoza_, which in turn call upon various scripts in the utils and bin directory. The scripts in the latter folders are mostly helper scripts to make life a tad easier. The repository contains a mix of languages in bash, python, and matlab.

In active development - do not use unless otherwise instructed by repo owners

Documentation for this package can be found at readthedocs (not up to date)

Policy & To Do

  • install using python setup.py develop
  • Docstrings in numpy format.
  • PEP8 - please set your editor to autopep8 on save!
  • Documentation with Sphinx (WIP)
  • Explore options to streamline code
  • Examples of applications for package (integration of pycortex & pRFpy)

overview of the pipeline

how to set up

Clone the repository: git clone https://github.com/gjheij/linescanning.git.

To setup the bash environment, edit setup file linescanning/shell/spinoza_setup:

  • line 76: add the path to your matlab installation if available (should be, for better anatomicall preprocessing)
  • line 87: add the path to your SPM installation
  • line 92: add your project name
  • line 97: add the path to project name as defined in line 92
  • line 102: add whether you're using (ME)MP(2)RAGE. This is required because the pipeline allows the usage of the average of an MP2RAGE and MP2RAGEME acquisition
  • line 105: add which type of data you're using (generally this will be the same as line 102)

Go to linescanning/shell and hit ./spinoza_setup setup setup. This will print a set of instructions that you need to follow. If all goes well this will make all the script executable, set all the paths, and install the python modules. The repository comes with a conda environment file, which can be activated with: conda create --name myenv --file environment.yml.

How to plan the line

plot

We currently aim to have two separate sessions: in the first session, we acquire high resolution anatomical scans and perform a population receptive field (pRF-) mapping paradigm (Dumoulin and Wandell, 2008) to delineate the visual field. After this session, we create surfaces of the brain and map the pRFs onto that via fMRIprep and pRFpy. We then select a certain vertex based on the parameters extracted from the pRF-mapping: eccentricity, size, and polar angle. Using these parameters, we can find an optimal vertex. We can obtain the vertex position, while by calculating the normal vector, we obtain the orientation that line should have (parellel to the normal vector and through the vertex point). Combining this information, we know how the line should be positioned in the first session anatomy. In the second session, we first acquire a low-resolution MP2RAGE with the volume coil. This is exported and registered to the first session anatomy during the second session to obtain the translations and rotations needed to map the line from the first session anatomy to the currently active second session by inputting the values in the MR-console. This procedure from registration to calculation of MR-console values is governed by spinoza_lineplanning and can be called with master -m 00 -s -h .

Owner
Jurjen Heij
Jurjen Heij
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022