A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Overview

Face-Detection-flask-gunicorn-nginx-docker

This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and scaled up with Gunicorn. This web service accepts an image as input and returns face-box coordinates.

Notes

  1. For face-detection, I used pytorch version of mtcnn from deep_utils library. For more information check out deep_utils.
  2. The service is scaled up using gunicorn. The gunicorn is a simple library with high throughput for scaling python services.
    1. To increase the number workers, increase number of workers in the docker-compose.yml file.
    2. For more information about gunicorn workers and threads check the following stackoverflow question
    3. gunicorn-workers-and-threads
  3. nginx is used as a reverse proxy

Setup

  1. The face-detection name in docker-compose can be changed to any of the models available by deep-utils library.
  2. For simplicity, I placed the weights of the mtcnn-torch model in app/weights.
  3. To use different face-detection models in deep_utils, apply the following changes:
    1. Change the value of FACE_DETECTION_MODEL in the docker-compose.yml file.
    2. Modify configs of a new model in app/base_app.py file.
    3. It's recommended to run the new model in your local system and acquire the downloaded weights from ~/.deep_utils directory and place it inside app/weights directory. This will save you tons of time while working with models with heavy weights.
    4. If your new model is based on tensorflow, comment the pytorch installation section in app/Dockerfile and uncomment the tensorflow installation lines.

RUN

To run the API, install docker and docker-compose, execute the following command:

windows

docker-compose up --build

Linux

sudo docker-compose up --build

Inference

To send an image and get back the boxes run the following commands: curl --request POST ip:port/endpoint -F [email protected]

If you run the service on your local system the following request shall work perfectly:

curl --request POST http://127.0.0.1:8000/face -F image=@./sample-images/movie-stars.jpg

The output will be as follows:

{
"face_1":[269,505,571,726],
"face_10":[73,719,186,809],
"face_11":[52,829,172,931],
"face_2":[57,460,187,550],
"face_3":[69,15,291,186],
"face_4":[49,181,185,279],
"face_5":[53,318,205,424],
"face_6":[18,597,144,716],
"face_7":[251,294,474,444],
"face_8":[217,177,403,315],
"face_9":[175,765,373,917]
}

Issues

If you find something missing, please open an issue or kindly create a pull request.

References

1.https://github.com/pooya-mohammadi/deep_utils

Licence

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
An open framework for Federated Learning.

Welcome to IntelĀ® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022