DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Overview

Vehicle Indicator Toolset

Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages.

Tracking of vehicles
The tracking of the vehicles with a track ID can be seen below.

|


Detection of the lanes.
Whenever the driver gets out of the lane, he will be displayed a warning to stay inside the lane.

|


Tail light detection
Detect all the tail lights of the vehicles applying brakes at night.

|


Traffic signal recognition
Warning is shown when to stop and resume again using traffic lights.

|



Vehicle collision estimation
Incase, a collision is estimated, driver is warned.

|



Pedestrian stepping
Whenever, pedestrian comes in our view, a warning is displayed.

|


Dependencies required:

  • Python 3.0
  • TensorFlow 2.0
  • openCV

Project Structure:

  • lanes:This folder contains files related to lane detection only.
  • tf-color: This folder contains files related to traffic light detection and detect the colour and accordingly give instructions to the driver.
  • tracked: This folder contains detection and tracking algorithm for the vehicles.
  • untracked: Detection and visualization only
  • utils: contains various functions that are used continuously again and again for different frames.
  • estimations: Detect pedestrians and vehicles too close to us that may cause collision.
  • cropping: Cropping frames using drag and drop or clicking points.
  • display: All the gifs shown above are stored here.

Requisities:

Download the tensorflow model from here.

  • Provide the path to the labels txt file using variable named PATH_TO_LABELS.
  • Provide the path to the tensorflow model using variable named model_name.
  • Make sure all the files are imported properly from the utils folder. If you get an error, add the location of the utils folder using sys module.
  • Tensorflow version 2.0 is must or else you may come across various error.

Working:

Run python integrate3.py or python intyolo.py after following the above mentioned requisities.
Now select the dash area for the car by clicking on multiple points as shown below. This is done to
remove detection of our own vehicle in some cases which may generate false results.

In the second step, select the area where searching of the lanes should be made. This may differ due to
the placement of dash-cams in the vehicle. The area above the horizon where road ends should not be selected.

Now, you can visualize the working and see the warnings/suggestions displayed to the driver.
All the works that are implemented individually are present in their respective folders, which are integrated together.
Old models may have some bugs now, as many files inside utils are changed.
Visit honors branch of models repository forked from tf/models to see more work on this project,
that I have done in google colab.

Drawbacks:

  • At night, searching for tail light should be made in the dark. If sufficient light is present, false cases can get introduced.
  • Tracking works good for bigger objects, while smaller may loose their track ID at places.
  • Threshold values used in lane detection needs to be altered depending on the roads and the quality of the videos.
  • Object detection needs to work properly for better results throughout. The model with higher accuracy should be downloaded from the link given above.
Owner
Alex Xu
Alex Xu
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Pratham Mehta 10 Nov 11, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022