Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview

Overview

Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify the several segments of customers allowing them to target the potential user base. In this machine learning project, we will make use of K-means clustering which is the essential algorithm for clustering unlabeled dataset. Before ahead in this project, learn what actually customer segmentation is.
seg

What is Customer Segmentation

Customer Segmentation is the process of division of customer base into several groups of individuals that share a similarity in different ways that are relevant to marketing such as gender, age, interests, and miscellaneous spending habits.

Companies that deploy customer segmentation are under the notion that every customer has different requirements and require a specific marketing effort to address them appropriately. Companies aim to gain a deeper approach of the customer they are targeting. Therefore, their aim has to be specific and should be tailored to address the requirements of each and every individual customer. Furthermore, through the data collected, companies can gain a deeper understanding of customer preferences as well as the requirements for discovering valuable segments that would reap them maximum profit. This way, they can strategize their marketing techniques more efficiently and minimize the possibility of risk to their investment.

The technique of customer segmentation is dependent on several key differentiators that divide customers into groups to be targeted. Data related to demographics, geography, economic status as well as behavioral patterns play a crucial role in determining the company direction towards addressing the various segments

What is K-Means Algorithm

While using the k-means clustering algorithm, the first step is to indicate the number of clusters (k) that we wish to produce in the final output. The algorithm starts by selecting k objects from dataset randomly that will serve as the initial centers for our clusters. These selected objects are the cluster means, also known as centroids. Then, the remaining objects have an assignment of the closest centroid. This centroid is defined by the Euclidean Distance present between the object and the cluster mean. We refer to this step as “cluster assignment”. When the assignment is complete, the algorithm proceeds to calculate new mean value of each cluster present in the data. After the recalculation of the centers, the observations are checked if they are closer to a different cluster. Using the updated cluster mean, the objects undergo reassignment. This goes on repeatedly through several iterations until the cluster assignments stop altering. The clusters that are present in the current iteration are the same as the ones obtained in the previous iteration.

Dataset

The dataset is aquired from kaggle and the link is given below :

https://www.kaggle.com/nelakurthisudheer/mall-customer-segmentation

The dataset consists of following five features of 200 customers:

  • CustomerID: Unique ID assigned to the customer

  • Gender: Gender of the customer

  • Age: Age of the customer

  • Annual Income (k$): Annual Income of the customer

  • Spending Score (1-100): Score assigned by the mall based on customer behavior and spending nature.

Steps for implementation

  • Import all neccessary packages
import ----- from ------
import -----
  • Data Exploration
customer_data=read.csv("/home/dataflair/Mall_Customers.csv")
str(customer_data)
names(customer_data)

head(customer_data)
summary(customer_data$Age)
  • Statistical Analysis
sd(customer_data$Age)
summary(customer_data$Annual.Income..k..)
sd(customer_data$Annual.Income..k..)
summary(customer_data$Age)
  • Visualizations
Bar Plot

a=table(customer_data$Gender)
barplot(a,main="Using BarPlot to display Gender Comparision",
       ylab="Count",
       xlab="Gender",
       col=rainbow(2),
       legend=rownames(a))
       

Pie Chart
pct=round(a/sum(a)*100)
lbs=paste(c("Female","Male")," ",pct,"%",sep=" ")
library(plotrix)
pie3D(a,labels=lbs,
   main="Pie Chart Depicting Ratio of Female and Male")
Histogram
hist(customer_data$Age,
    col="blue",
    main="Histogram to Show Count of Age Class",
    xlab="Age Class",
    ylab="Frequency",
    labels=TRUE)
Box Plot
boxplot(customer_data$Age,
       col="ff0066",
       main="Boxplot for Descriptive Analysis of Age")
  • Analysis
Analyzing the annual income of the customers through the Histogram
summary(customer_data$Annual.Income..k..)
hist(customer_data$Annual.Income..k..,
  col="#660033",
  main="Histogram for Annual Income",
  xlab="Annual Income Class",
  ylab="Frequency",
  labels=TRUE)
Density Plot
plot(density(customer_data$Annual.Income..k..),
    col="yellow",
    main="Density Plot for Annual Income",
    xlab="Annual Income Class",
    ylab="Density")
polygon(density(customer_data$Annual.Income..k..),
        col="#ccff66")
Analyzing Spending Score of the Customers with the help of BoxPlot
summary(customer_data$Spending.Score..1.100.)

Min. 1st Qu. Median Mean 3rd Qu. Max. 
## 1.00 34.75 50.00 50.20 73.00 99.00

boxplot(customer_data$Spending.Score..1.100.,
   horizontal=TRUE,
   col="#990000",
   main="BoxPlot for Descriptive Analysis of Spending Score")

K-means Algorithm

  • We specify the number of clusters that we need to create.
  • The algorithm selects k objects at random from the dataset. This object is the initial cluster or mean.
  • The closest centroid obtains the assignment of a new observation. We base this assignment on the Euclidean Distance between object and the centroid.
  • k clusters in the data points update the centroid through calculation of the new mean values present in all the data points of the cluster. The kth cluster’s centroid has a - - Length of p that contains means of all variables for observations in the k-th cluster. We denote the number of variables with p.
  • Iterative minimization of the total within the sum of squares. Then through the iterative minimization of the total sum of the square, the assignment stop wavering when we - - Achieve maximum iteration. The default value is 10 that the R software uses for the maximum iterations.

Determining Optimal Clusters

While working with clusters, you need to specify the number of clusters to use. You would like to utilize the optimal number of clusters. To help you in determining the optimal clusters, there are three popular methods –

  • Elbow method The main goal behind cluster partitioning methods like k-means is to define the clusters such that the intra-cluster variation stays minimum.

minimize(sum W(Ck)), k=1…k

Where Ck represents the kth cluster and W(Ck) denotes the intra-cluster variation. With the measurement of the total intra-cluster variation, one can evaluate the compactness of the clustering boundary. We can then proceed to define the optimal clusters as follows –

First, we calculate the clustering algorithm for several values of k. This can be done by creating a variation within k from 1 to 10 clusters. We then calculate the total intra-cluster sum of square (iss). Then, we proceed to plot iss based on the number of k clusters. This plot denotes the appropriate number of clusters required in our model. In the plot, the location of a bend or a knee is the indication of the optimum number of clusters.

minimize(sum W(Ck)), k=1…k
library(purrr)
set.seed(123)
# function to calculate total intra-cluster sum of square 
iss <- function(k) {
  kmeans(customer_data[,3:5],k,iter.max=100,nstart=100,algorithm="Lloyd" )$tot.withinss
}

k.values <- 1:10


iss_values <- map_dbl(k.values, iss)

plot(k.values, iss_values,
    type="b", pch = 19, frame = FALSE, 
    xlab="Number of clusters K",
    ylab="Total intra-clusters sum of squares")

K-Means-Elbow-graph-in-R From the above graph, we conclude that 4 is the appropriate number of clusters since it seems to be appearing at the bend in the elbow plot.

  • Average Silhouette method With the help of the average silhouette method, we can measure the quality of our clustering operation. With this, we can determine how well within the cluster is the data object. If we obtain a high average silhouette width, it means that we have good clustering. The average silhouette method calculates the mean of silhouette observations for different k values. With the optimal number of k clusters, one can maximize the average silhouette over significant values for k clusters.

Using the silhouette function in the cluster package, we can compute the average silhouette width using the kmean function. Here, the optimal cluster will possess highest average.

library(cluster) 
library(gridExtra)
library(grid)


k2<-kmeans(customer_data[,3:5],2,iter.max=100,nstart=50,algorithm="Lloyd")
s2<-plot(silhouette(k2$cluster,dist(customer_data[,3:5],"euclidean")))

np-function-graph-in-data-science-clustering

  • Gap statistic In 2001, researchers at Stanford University – R. Tibshirani, G.Walther and T. Hastie published the Gap Statistic Method. We can use this method to any of the clustering method like K-means, hierarchical clustering etc. Using the gap statistic, one can compare the total intracluster variation for different values of k along with their expected values under the null reference distribution of data. With the help of Monte Carlo simulations, one can produce the sample dataset. For each variable in the dataset, we can calculate the range between min(xi) and max (xj) through which we can produce values uniformly from interval lower bound to upper bound.

For computing the gap statistics method we can utilize the clusGap function for providing gap statistic as well as standard error for a given output.

set.seed(125)
stat_gap <- clusGap(customer_data[,3:5], FUN = kmeans, nstart = 25,
            K.max = 10, B = 50)
fviz_gap_stat(stat_gap)

fviz_gap_stat-function-graph-in-ml

By Using these three methods in k-means clustering we have to find out which is giving the best minimum number optimal clusters. PCA-Cluster-Graph-in-ML-1 PCA-Cluster-Graph-in-data-science From the above segemented graph:

  • Cluster 4 and 1 – These two clusters consist of customers with medium PCA1 and medium PCA2 score.

  • Cluster 6 – This cluster represents customers having a high PCA2 and a low PCA1.

  • Cluster 5 – In this cluster, there are customers with a medium PCA1 and a low PCA2 score.

  • Cluster 3 – This cluster comprises of customers with a high PCA1 income and a high PCA2.

  • Cluster 2 – This comprises of customers with a high PCA2 and a medium annual spend of income.

With the help of clustering, we can understand the variables much better, prompting us to take careful decisions. With the identification of customers, companies can release products and services that target customers based on several parameters like income, age, spending patterns, etc. Furthermore, more complex patterns like product reviews are taken into consideration for better segmentation

Owner
NelakurthiSudheer
Data Science | Kaggle Participant | Web Developer | MachineHack
NelakurthiSudheer
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023