Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

Related tags

Deep LearningReFine
Overview

ReFine: Multi-Grained Explainability for GNNs

We are trying hard to update the code, but it may take a while to complete due to our tight schedule recently. Thank you for your waiting!

Installation

Requirements

  • CPU or NVIDIA GPU, Linux, Python 3.7
  • PyTorch, various Python packages

Main Packages

  1. Pytorch Geometric. Official Download.
# We use TORCH version 1.6.0
CUDA=cu101
TORCH=1.6.0 
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-geometric
  1. Visual Genome. Google Drive Download. This is used for preprocessing the VG-5 dataset and visualizing the generated explanations. Manually download it to the same directory as data/. (Yes, this package can be installed using pip or API, but we find it slow to use).

Datasets

  1. The processed raw data for BA-3motif is available in the data/ folder.
  2. Datasets MNIST, Mutagenicity will be automatically downloaded when training models.
  3. We select and label 4444 graphs from https://visualgenome.org/ to construct the VG-5 dataset. The graphs are labeled with five classes: stadium, street, farm, surfing, forest. Each graph contains regions of the objects as the nodes, while edges indicate the relationships between object nodes.

Download the dataset from Google Drive. Arrange the dir as

data ---BA3
 |------VG
        |---raw

Please remember to cite Visual Genome (bibtex) if you use our VG-5 dataset.

Training GNNs

cd gnns/
python ba3motif_gnn.py --epoch 100 --num_unit 2 --batch_size 128

The trained GNNs will be saved in param/gnns.

Explaining the Predictions

code is coming soon

Evaluation & Visualization

code is coming soon

Citation

Please cite our paper if you find the repository useful.

@inproceedings{2021refine,
  title={Towards Multi-Grained Explainability for Graph Neural Networks },
  author={Wang, Xiang and Wu, Ying-Xin and Zhang, An and He, Xiangnan and Chua, Tat-Seng},
  booktitle={Proceedings of the 35th Conference on Neural Information Processing Systems},
  year={2021} 
}
Owner
Shirley (Ying-Xin) Wu
Senior Undergraduate @ LDS, School of Data Science. [email protected]
Shirley (Ying-Xin) Wu
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022