PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Overview

PICK-PyTorch

***** Updated on Feb 6th, 2021: Train Ticket dataset is now available for academic research. You can download from Google Drive or OneDrive. It contains 1,530 synthetic images and 320 real images for training, and 80 real images for testing. Please refer to our paper for more details about how to sample training/testing set from EATEN and generate the corresponding annotations.*****

***** Updated on Sep 17th, 2020: A training example on the large-scale document understanding dataset, DocBank, is now available. Please refer to examples/DocBank/README.md for more details. Thanks TengQi Ye for this contribution.*****

PyTorch reimplementation of "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020). This project is different from our original implementation.

Introduction

PICK is a framework that is effective and robust in handling complex documents layout for Key Information Extraction (KIE) by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Overall architecture shown follows.

Overall

Requirements

  • python = 3.6
  • torchvision = 0.6.1
  • tabulate = 0.8.7
  • overrides = 3.0.0
  • opencv_python = 4.3.0.36
  • numpy = 1.16.4
  • pandas = 1.0.5
  • allennlp = 1.0.0
  • torchtext = 0.6.0
  • tqdm = 4.47.0
  • torch = 1.5.1
pip install -r requirements.txt

Usage

Distributed training with config files

Modify the configurations in config.json and dist_train.sh files, then run:

bash dist_train.sh

The application will be launched via launch.py on a 4 GPU node with one process per GPU (recommend).

This is equivalent to

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json -d 1,2,3,4 --local_world_size 4

and is equivalent to specify indices of available GPUs by CUDA_VISIBLE_DEVICES instead of -d args

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json --local_world_size 4

Similarly, it can be launched with a single process that spans all 4 GPUs (if node has 4 available GPUs) using (don't recommend):

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=1 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json --local_world_size 1

Using Multiple Node

You can enable multi-node multi-GPU training by setting nnodes and node_rank args of the commandline line on every node. e.g., 2 nodes 4 gpus run as follows

Node 1, ip: 192.168.0.10, then run on node 1 as follows

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=2 --node_rank=0 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c config.json --local_world_size 4  

Node 2, ip: 192.168.0.15, then run on node 2 as follows

CUDA_VISIBLE_DEVICES=2,4,6,7 python -m torch.distributed.launch --nnodes=2 --node_rank=1 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c config.json --local_world_size 4  

Resuming from checkpoints

You can resume from a previously saved checkpoint by:

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -d 1,2,3,4 --local_world_size 4 --resume path/to/checkpoint

Debug mode on one GPU/CPU training with config files

This option of training mode can debug code without distributed way. -dist must set to false to turn off distributed mode. -d specify which one gpu will be used.

python train.py -c config.json -d 1 -dist false

Testing from checkpoints

You can test from a previously saved checkpoint by:

python test.py --checkpoint path/to/checkpoint --boxes_transcripts path/to/boxes_transcripts \
               --images_path path/to/images_path --output_folder path/to/output_folder \
               --gpu 0 --batch_size 2

Customization

Training custom datasets

You can train your own datasets following the steps outlined below.

  1. Prepare the correct format of files as provided in data folder.
    • Please see data/README.md an instruction how to prepare the data in required format for PICK.
  2. Modify train_dataset and validation_dataset args in config.json file, including files_name, images_folder, boxes_and_transcripts_folder, entities_folder, iob_tagging_type and resized_image_size.
  3. Modify Entities_list in utils/entities_list.py file according to the entity type of your dataset.
  4. Modify keys.txt in utils/keys.txt file if needed according to the vocabulary of your dataset.
  5. Modify MAX_BOXES_NUM and MAX_TRANSCRIPT_LEN in data_tuils/documents.py file if needed.

Note: The self-build datasets our paper used cannot be shared for patient privacy and proprietary issues.

Checkpoints

You can specify the name of the training session in config.json files:

"name": "PICK_Default",
"run_id": "test"

The checkpoints will be saved in save_dir/name/run_id_timestamp/checkpoint_epoch_n, with timestamp in mmdd_HHMMSS format.

A copy of config.json file will be saved in the same folder.

Note: checkpoints contain:

{
  'arch': arch,
  'epoch': epoch,
  'state_dict': self.model.state_dict(),
  'optimizer': self.optimizer.state_dict(),
  'monitor_best': self.monitor_best,
  'config': self.config
}

Tensorboard Visualization

This project supports Tensorboard visualization by using either torch.utils.tensorboard or TensorboardX.

  1. Install

    If you are using pytorch 1.1 or higher, install tensorboard by 'pip install tensorboard>=1.14.0'.

    Otherwise, you should install tensorboardx. Follow installation guide in TensorboardX.

  2. Run training

    Make sure that tensorboard option in the config file is turned on.

     "tensorboard" : true
    
  3. Open Tensorboard server

    Type tensorboard --logdir saved/log/ at the project root, then server will open at http://localhost:6006

By default, values of loss will be logged. If you need more visualizations, use add_scalar('tag', data), add_image('tag', image), etc in the trainer._train_epoch method. add_something() methods in this project are basically wrappers for those of tensorboardX.SummaryWriter and torch.utils.tensorboard.SummaryWriter modules.

Note: You don't have to specify current steps, since WriterTensorboard class defined at logger/visualization.py will track current steps.

Results on Train Ticket

example

TODOs

  • Dataset cache mechanism to speed up training loop
  • Multi-node multi-gpu setup (DistributedDataParallel)

Citations

If you find this code useful please cite our paper:

@inproceedings{Yu2020PICKPK,
  title={{PICK}: Processing Key Information Extraction from Documents using 
  Improved Graph Learning-Convolutional Networks},
  author={Wenwen Yu and Ning Lu and Xianbiao Qi and Ping Gong and Rong Xiao},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  year={2020}
}

License

This project is licensed under the MIT License. See LICENSE for more details.

Acknowledgements

This project structure takes example by PyTorch Template Project.

Owner
Wenwen Yu
Ph.D. student at Huazhong University of Science and Technology
Wenwen Yu
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022