PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Overview

PICK-PyTorch

***** Updated on Feb 6th, 2021: Train Ticket dataset is now available for academic research. You can download from Google Drive or OneDrive. It contains 1,530 synthetic images and 320 real images for training, and 80 real images for testing. Please refer to our paper for more details about how to sample training/testing set from EATEN and generate the corresponding annotations.*****

***** Updated on Sep 17th, 2020: A training example on the large-scale document understanding dataset, DocBank, is now available. Please refer to examples/DocBank/README.md for more details. Thanks TengQi Ye for this contribution.*****

PyTorch reimplementation of "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020). This project is different from our original implementation.

Introduction

PICK is a framework that is effective and robust in handling complex documents layout for Key Information Extraction (KIE) by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Overall architecture shown follows.

Overall

Requirements

  • python = 3.6
  • torchvision = 0.6.1
  • tabulate = 0.8.7
  • overrides = 3.0.0
  • opencv_python = 4.3.0.36
  • numpy = 1.16.4
  • pandas = 1.0.5
  • allennlp = 1.0.0
  • torchtext = 0.6.0
  • tqdm = 4.47.0
  • torch = 1.5.1
pip install -r requirements.txt

Usage

Distributed training with config files

Modify the configurations in config.json and dist_train.sh files, then run:

bash dist_train.sh

The application will be launched via launch.py on a 4 GPU node with one process per GPU (recommend).

This is equivalent to

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json -d 1,2,3,4 --local_world_size 4

and is equivalent to specify indices of available GPUs by CUDA_VISIBLE_DEVICES instead of -d args

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json --local_world_size 4

Similarly, it can be launched with a single process that spans all 4 GPUs (if node has 4 available GPUs) using (don't recommend):

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=1 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json --local_world_size 1

Using Multiple Node

You can enable multi-node multi-GPU training by setting nnodes and node_rank args of the commandline line on every node. e.g., 2 nodes 4 gpus run as follows

Node 1, ip: 192.168.0.10, then run on node 1 as follows

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=2 --node_rank=0 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c config.json --local_world_size 4  

Node 2, ip: 192.168.0.15, then run on node 2 as follows

CUDA_VISIBLE_DEVICES=2,4,6,7 python -m torch.distributed.launch --nnodes=2 --node_rank=1 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c config.json --local_world_size 4  

Resuming from checkpoints

You can resume from a previously saved checkpoint by:

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -d 1,2,3,4 --local_world_size 4 --resume path/to/checkpoint

Debug mode on one GPU/CPU training with config files

This option of training mode can debug code without distributed way. -dist must set to false to turn off distributed mode. -d specify which one gpu will be used.

python train.py -c config.json -d 1 -dist false

Testing from checkpoints

You can test from a previously saved checkpoint by:

python test.py --checkpoint path/to/checkpoint --boxes_transcripts path/to/boxes_transcripts \
               --images_path path/to/images_path --output_folder path/to/output_folder \
               --gpu 0 --batch_size 2

Customization

Training custom datasets

You can train your own datasets following the steps outlined below.

  1. Prepare the correct format of files as provided in data folder.
    • Please see data/README.md an instruction how to prepare the data in required format for PICK.
  2. Modify train_dataset and validation_dataset args in config.json file, including files_name, images_folder, boxes_and_transcripts_folder, entities_folder, iob_tagging_type and resized_image_size.
  3. Modify Entities_list in utils/entities_list.py file according to the entity type of your dataset.
  4. Modify keys.txt in utils/keys.txt file if needed according to the vocabulary of your dataset.
  5. Modify MAX_BOXES_NUM and MAX_TRANSCRIPT_LEN in data_tuils/documents.py file if needed.

Note: The self-build datasets our paper used cannot be shared for patient privacy and proprietary issues.

Checkpoints

You can specify the name of the training session in config.json files:

"name": "PICK_Default",
"run_id": "test"

The checkpoints will be saved in save_dir/name/run_id_timestamp/checkpoint_epoch_n, with timestamp in mmdd_HHMMSS format.

A copy of config.json file will be saved in the same folder.

Note: checkpoints contain:

{
  'arch': arch,
  'epoch': epoch,
  'state_dict': self.model.state_dict(),
  'optimizer': self.optimizer.state_dict(),
  'monitor_best': self.monitor_best,
  'config': self.config
}

Tensorboard Visualization

This project supports Tensorboard visualization by using either torch.utils.tensorboard or TensorboardX.

  1. Install

    If you are using pytorch 1.1 or higher, install tensorboard by 'pip install tensorboard>=1.14.0'.

    Otherwise, you should install tensorboardx. Follow installation guide in TensorboardX.

  2. Run training

    Make sure that tensorboard option in the config file is turned on.

     "tensorboard" : true
    
  3. Open Tensorboard server

    Type tensorboard --logdir saved/log/ at the project root, then server will open at http://localhost:6006

By default, values of loss will be logged. If you need more visualizations, use add_scalar('tag', data), add_image('tag', image), etc in the trainer._train_epoch method. add_something() methods in this project are basically wrappers for those of tensorboardX.SummaryWriter and torch.utils.tensorboard.SummaryWriter modules.

Note: You don't have to specify current steps, since WriterTensorboard class defined at logger/visualization.py will track current steps.

Results on Train Ticket

example

TODOs

  • Dataset cache mechanism to speed up training loop
  • Multi-node multi-gpu setup (DistributedDataParallel)

Citations

If you find this code useful please cite our paper:

@inproceedings{Yu2020PICKPK,
  title={{PICK}: Processing Key Information Extraction from Documents using 
  Improved Graph Learning-Convolutional Networks},
  author={Wenwen Yu and Ning Lu and Xianbiao Qi and Ping Gong and Rong Xiao},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  year={2020}
}

License

This project is licensed under the MIT License. See LICENSE for more details.

Acknowledgements

This project structure takes example by PyTorch Template Project.

Owner
Wenwen Yu
Ph.D. student at Huazhong University of Science and Technology
Wenwen Yu
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
LBK 20 Dec 02, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022