PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Overview

PICK-PyTorch

***** Updated on Feb 6th, 2021: Train Ticket dataset is now available for academic research. You can download from Google Drive or OneDrive. It contains 1,530 synthetic images and 320 real images for training, and 80 real images for testing. Please refer to our paper for more details about how to sample training/testing set from EATEN and generate the corresponding annotations.*****

***** Updated on Sep 17th, 2020: A training example on the large-scale document understanding dataset, DocBank, is now available. Please refer to examples/DocBank/README.md for more details. Thanks TengQi Ye for this contribution.*****

PyTorch reimplementation of "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020). This project is different from our original implementation.

Introduction

PICK is a framework that is effective and robust in handling complex documents layout for Key Information Extraction (KIE) by combining graph learning with graph convolution operation, yielding a richer semantic representation containing the textual and visual features and global layout without ambiguity. Overall architecture shown follows.

Overall

Requirements

  • python = 3.6
  • torchvision = 0.6.1
  • tabulate = 0.8.7
  • overrides = 3.0.0
  • opencv_python = 4.3.0.36
  • numpy = 1.16.4
  • pandas = 1.0.5
  • allennlp = 1.0.0
  • torchtext = 0.6.0
  • tqdm = 4.47.0
  • torch = 1.5.1
pip install -r requirements.txt

Usage

Distributed training with config files

Modify the configurations in config.json and dist_train.sh files, then run:

bash dist_train.sh

The application will be launched via launch.py on a 4 GPU node with one process per GPU (recommend).

This is equivalent to

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json -d 1,2,3,4 --local_world_size 4

and is equivalent to specify indices of available GPUs by CUDA_VISIBLE_DEVICES instead of -d args

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json --local_world_size 4

Similarly, it can be launched with a single process that spans all 4 GPUs (if node has 4 available GPUs) using (don't recommend):

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=1 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -c config.json --local_world_size 1

Using Multiple Node

You can enable multi-node multi-GPU training by setting nnodes and node_rank args of the commandline line on every node. e.g., 2 nodes 4 gpus run as follows

Node 1, ip: 192.168.0.10, then run on node 1 as follows

CUDA_VISIBLE_DEVICES=1,2,3,4 python -m torch.distributed.launch --nnodes=2 --node_rank=0 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c config.json --local_world_size 4  

Node 2, ip: 192.168.0.15, then run on node 2 as follows

CUDA_VISIBLE_DEVICES=2,4,6,7 python -m torch.distributed.launch --nnodes=2 --node_rank=1 --nproc_per_node=4 \
--master_addr=192.168.0.10 --master_port=5555 \
train.py -c config.json --local_world_size 4  

Resuming from checkpoints

You can resume from a previously saved checkpoint by:

python -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=4 \
--master_addr=127.0.0.1 --master_port=5555 \
train.py -d 1,2,3,4 --local_world_size 4 --resume path/to/checkpoint

Debug mode on one GPU/CPU training with config files

This option of training mode can debug code without distributed way. -dist must set to false to turn off distributed mode. -d specify which one gpu will be used.

python train.py -c config.json -d 1 -dist false

Testing from checkpoints

You can test from a previously saved checkpoint by:

python test.py --checkpoint path/to/checkpoint --boxes_transcripts path/to/boxes_transcripts \
               --images_path path/to/images_path --output_folder path/to/output_folder \
               --gpu 0 --batch_size 2

Customization

Training custom datasets

You can train your own datasets following the steps outlined below.

  1. Prepare the correct format of files as provided in data folder.
    • Please see data/README.md an instruction how to prepare the data in required format for PICK.
  2. Modify train_dataset and validation_dataset args in config.json file, including files_name, images_folder, boxes_and_transcripts_folder, entities_folder, iob_tagging_type and resized_image_size.
  3. Modify Entities_list in utils/entities_list.py file according to the entity type of your dataset.
  4. Modify keys.txt in utils/keys.txt file if needed according to the vocabulary of your dataset.
  5. Modify MAX_BOXES_NUM and MAX_TRANSCRIPT_LEN in data_tuils/documents.py file if needed.

Note: The self-build datasets our paper used cannot be shared for patient privacy and proprietary issues.

Checkpoints

You can specify the name of the training session in config.json files:

"name": "PICK_Default",
"run_id": "test"

The checkpoints will be saved in save_dir/name/run_id_timestamp/checkpoint_epoch_n, with timestamp in mmdd_HHMMSS format.

A copy of config.json file will be saved in the same folder.

Note: checkpoints contain:

{
  'arch': arch,
  'epoch': epoch,
  'state_dict': self.model.state_dict(),
  'optimizer': self.optimizer.state_dict(),
  'monitor_best': self.monitor_best,
  'config': self.config
}

Tensorboard Visualization

This project supports Tensorboard visualization by using either torch.utils.tensorboard or TensorboardX.

  1. Install

    If you are using pytorch 1.1 or higher, install tensorboard by 'pip install tensorboard>=1.14.0'.

    Otherwise, you should install tensorboardx. Follow installation guide in TensorboardX.

  2. Run training

    Make sure that tensorboard option in the config file is turned on.

     "tensorboard" : true
    
  3. Open Tensorboard server

    Type tensorboard --logdir saved/log/ at the project root, then server will open at http://localhost:6006

By default, values of loss will be logged. If you need more visualizations, use add_scalar('tag', data), add_image('tag', image), etc in the trainer._train_epoch method. add_something() methods in this project are basically wrappers for those of tensorboardX.SummaryWriter and torch.utils.tensorboard.SummaryWriter modules.

Note: You don't have to specify current steps, since WriterTensorboard class defined at logger/visualization.py will track current steps.

Results on Train Ticket

example

TODOs

  • Dataset cache mechanism to speed up training loop
  • Multi-node multi-gpu setup (DistributedDataParallel)

Citations

If you find this code useful please cite our paper:

@inproceedings{Yu2020PICKPK,
  title={{PICK}: Processing Key Information Extraction from Documents using 
  Improved Graph Learning-Convolutional Networks},
  author={Wenwen Yu and Ning Lu and Xianbiao Qi and Ping Gong and Rong Xiao},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  year={2020}
}

License

This project is licensed under the MIT License. See LICENSE for more details.

Acknowledgements

This project structure takes example by PyTorch Template Project.

Owner
Wenwen Yu
Ph.D. student at Huazhong University of Science and Technology
Wenwen Yu
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023