Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Related tags

Deep LearningDDU
Overview

Deep Deterministic Uncertainty

arXiv Pytorch 1.8.1 License: MIT

This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty.

If the code or the paper has been useful in your research, please add a citation to our work:

@article{mukhoti2021deterministic,
  title={Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty},
  author={Mukhoti, Jishnu and Kirsch, Andreas and van Amersfoort, Joost and Torr, Philip HS and Gal, Yarin},
  journal={arXiv preprint arXiv:2102.11582},
  year={2021}
}

Dependencies

The code is based on PyTorch and requires a few further dependencies, listed in environment.yml. It should work with newer versions as well.

OoD Detection

Datasets

For OoD detection, you can train on CIFAR-10/100. You can also train on Dirty-MNIST by downloading Ambiguous-MNIST (amnist_labels.pt and amnist_samples.pt) from here and using the following training instructions.

Training

In order to train a model for the OoD detection task, use the train.py script. Following are the main parameters for training:

--seed: seed for initialization
--dataset: dataset used for training (cifar10/cifar100/dirty_mnist)
--dataset-root: /path/to/amnist_labels.pt and amnist_samples.pt/ (if training on dirty-mnist)
--model: model to train (wide_resnet/vgg16/resnet18/resnet50/lenet)
-sn: whether to use spectral normalization (available for wide_resnet, vgg16 and resnets)
--coeff: Coefficient for spectral normalization
-mod: whether to use architectural modifications (leaky ReLU + average pooling in skip connections)
--save-path: path/for/saving/model/

As an example, in order to train a Wide-ResNet-28-10 with spectral normalization and architectural modifications on CIFAR-10, use the following:

python train.py \
       --seed 1 \
       --dataset cifar10 \
       --model wide_resnet \
       -sn -mod \
       --coeff 3.0 

Similarly, to train a ResNet-18 with spectral normalization on Dirty-MNIST, use:

python train.py \
       --seed 1 \
       --dataset dirty-mnist \
       --dataset-root /home/user/amnist/ \
       --model resnet18 \
       -sn \
       --coeff 3.0

Evaluation

To evaluate trained models, use evaluate.py. This script can evaluate and aggregate results over multiple experimental runs. For example, if the pretrained models are stored in a directory path /home/user/models, store them using the following directory structure:

models
├── Run1
│   └── wide_resnet_1_350.model
├── Run2
│   └── wide_resnet_2_350.model
├── Run3
│   └── wide_resnet_3_350.model
├── Run4
│   └── wide_resnet_4_350.model
└── Run5
    └── wide_resnet_5_350.model

For an ensemble of models, store the models using the following directory structure:

model_ensemble
├── Run1
│   ├── wide_resnet_1_350.model
│   ├── wide_resnet_2_350.model
│   ├── wide_resnet_3_350.model
│   ├── wide_resnet_4_350.model
│   └── wide_resnet_5_350.model
├── Run2
│   ├── wide_resnet_10_350.model
│   ├── wide_resnet_6_350.model
│   ├── wide_resnet_7_350.model
│   ├── wide_resnet_8_350.model
│   └── wide_resnet_9_350.model
├── Run3
│   ├── wide_resnet_11_350.model
│   ├── wide_resnet_12_350.model
│   ├── wide_resnet_13_350.model
│   ├── wide_resnet_14_350.model
│   └── wide_resnet_15_350.model
├── Run4
│   ├── wide_resnet_16_350.model
│   ├── wide_resnet_17_350.model
│   ├── wide_resnet_18_350.model
│   ├── wide_resnet_19_350.model
│   └── wide_resnet_20_350.model
└── Run5
    ├── wide_resnet_21_350.model
    ├── wide_resnet_22_350.model
    ├── wide_resnet_23_350.model
    ├── wide_resnet_24_350.model
    └── wide_resnet_25_350.model

Following are the main parameters for evaluation:

--seed: seed used for initializing the first trained model
--dataset: dataset used for training (cifar10/cifar100)
--ood_dataset: OoD dataset to compute AUROC
--load-path: /path/to/pretrained/models/
--model: model architecture to load (wide_resnet/vgg16)
--runs: number of experimental runs
-sn: whether the model was trained using spectral normalization
--coeff: Coefficient for spectral normalization
-mod: whether the model was trained using architectural modifications
--ensemble: number of models in the ensemble
--model-type: type of model to load for evaluation (softmax/ensemble/gmm)

As an example, in order to evaluate a Wide-ResNet-28-10 with spectral normalization and architectural modifications on CIFAR-10 with OoD dataset as SVHN, use the following:

python evaluate.py \
       --seed 1 \
       --dataset cifar10 \
       --ood_dataset svhn \
       --load-path /path/to/pretrained/models/ \
       --model wide_resnet \
       --runs 5 \
       -sn -mod \
       --coeff 3.0 \
       --model-type softmax

Similarly, to evaluate the above model using feature density, set --model-type gmm. The evaluation script assumes that the seeds of models trained in consecutive runs differ by 1. The script stores the results in a json file with the following structure:

{
    "mean": {
        "accuracy": mean accuracy,
        "ece": mean ECE,
        "m1_auroc": mean AUROC using log density / MI for ensembles,
        "m1_auprc": mean AUPRC using log density / MI for ensembles,
        "m2_auroc": mean AUROC using entropy / PE for ensembles,
        "m2_auprc": mean AUPRC using entropy / PE for ensembles,
        "t_ece": mean ECE (post temp scaling)
        "t_m1_auroc": mean AUROC using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": mean AUPRC using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": mean AUROC using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": mean AUPRC using entropy / PE for ensembles (post temp scaling)
    },
    "std": {
        "accuracy": std error accuracy,
        "ece": std error ECE,
        "m1_auroc": std error AUROC using log density / MI for ensembles,
        "m1_auprc": std error AUPRC using log density / MI for ensembles,
        "m2_auroc": std error AUROC using entropy / PE for ensembles,
        "m2_auprc": std error AUPRC using entropy / PE for ensembles,
        "t_ece": std error ECE (post temp scaling),
        "t_m1_auroc": std error AUROC using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": std error AUPRC using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": std error AUROC using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": std error AUPRC using entropy / PE for ensembles (post temp scaling)
    },
    "values": {
        "accuracy": accuracy list,
        "ece": ece list,
        "m1_auroc": AUROC list using log density / MI for ensembles,
        "m2_auroc": AUROC list using entropy / PE for ensembles,
        "t_ece": ece list (post temp scaling),
        "t_m1_auroc": AUROC list using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": AUPRC list using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": AUROC list using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": AUPRC list using entropy / PE for ensembles (post temp scaling)
    },
    "info": {dictionary of args}
}

Results

Dirty-MNIST

To visualise DDU's performance on Dirty-MNIST (i.e., Fig. 1 of the paper), use fig_1_plot.ipynb. The notebook requires a pretrained LeNet, VGG-16 and ResNet-18 with spectral normalization trained on Dirty-MNIST and visualises the softmax entropy and feature density for Dirty-MNIST (iD) samples vs Fashion-MNIST (OoD) samples. The notebook also visualises the softmax entropies of MNIST vs Ambiguous-MNIST samples for the ResNet-18+SN model (Fig. 2 of the paper). The following figure shows the output of the notebook for the LeNet, VGG-16 and ResNet18+SN model we trained on Dirty-MNIST.

CIFAR-10 vs SVHN

The following table presents results for a Wide-ResNet-28-10 architecture trained on CIFAR-10 with SVHN as the OoD dataset. For the full set of results, refer to the paper.

Method Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy Test ECE AUROC
Softmax Softmax Entropy Softmax Entropy 95.98+-0.02 0.85+-0.02 94.44+-0.43
Energy-based Softmax Entropy Softmax Density 95.98+-0.02 0.85+-0.02 94.56+-0.51
5-Ensemble Predictive Entropy Predictive Entropy 96.59+-0.02 0.76+-0.03 97.73+-0.31
DDU (ours) Softmax Entropy GMM Density 95.97+-0.03 0.85+-0.04 98.09+-0.10

Active Learning

To run active learning experiments, use active_learning_script.py. You can run active learning experiments on both MNIST as well as Dirty-MNIST. When running with Dirty-MNIST, you will need to provide a pretrained model on Dirty-MNIST to distinguish between clean MNIST and Ambiguous-MNIST samples. The following are the main command line arguments for active_learning_script.py.

--seed: seed used for initializing the first model (later experimental runs will have seeds incremented by 1)
--model: model architecture to train (resnet18)
-ambiguous: whether to use ambiguous MNIST during training. If this is set to True, the models will be trained on Dirty-MNIST, otherwise they will train on MNIST.
--dataset-root: /path/to/amnist_labels.pt and amnist_samples.pt/
--trained-model: model architecture of pretrained model to distinguish clean and ambiguous MNIST samples
-tsn: if pretrained model has been trained using spectral normalization
--tcoeff: coefficient of spectral normalization used on pretrained model
-tmod: if pretrained model has been trained using architectural modifications (leaky ReLU and average pooling on skip connections)
--saved-model-path: /path/to/saved/pretrained/model/
--saved-model-name: name of the saved pretrained model file
--threshold: Threshold of softmax entropy to decide if a sample is ambiguous (samples having higher softmax entropy than threshold will be considered ambiguous)
--subsample: number of clean MNIST samples to use to subsample clean MNIST
-sn: whether to use spectral normalization during training
--coeff: coefficient of spectral normalization during training
-mod: whether to use architectural modifications (leaky ReLU and average pooling on skip connections) during training
--al-type: type of active learning acquisition model (softmax/ensemble/gmm)
-mi: whether to use mutual information for ensemble al-type
--num-initial-samples: number of initial samples in the training set
--max-training-samples: maximum number of training samples
--acquisition-batch-size: batch size for each acquisition step

As an example, to run the active learning experiment on MNIST using the DDU method, use:

python active_learning_script.py \
       --seed 1 \
       --model resnet18 \
       -sn -mod \
       --al-type gmm

Similarly, to run the active learning experiment on Dirty-MNIST using the DDU baseline, with a pretrained ResNet-18 with SN to distinguish clean and ambiguous MNIST samples, use the following:

python active_learning_script.py \
       --seed 1 \
       --model resnet18 \
       -sn -mod \
       -ambiguous \
       --dataset-root /home/user/amnist/ \
       --trained-model resnet18 \
       -tsn \
       --saved-model-path /path/to/pretrained/model \
       --saved-model-name resnet18_sn_3.0_1_350.model \
       --threshold 1.0 \
       --subsample 1000 \
       --al-type gmm

Results

The active learning script stores all results in json files. The MNIST test set accuracy is stored in a json file with the following structure:

{
    "experiment run": list of MNIST test set accuracies one per acquisition step
}

When using ambiguous samples in the pool set, the script also stores the fraction of ambiguous samples acquired in each step in the following json:

{
    "experiment run": list of fractions of ambiguous samples in the acquired training set
}

Visualisation

To visualise results from the above json files, use the al_plot.ipynb notebook. The following diagram shows the performance of different baselines (softmax, ensemble PE, ensemble MI and DDU) on MNIST and Dirty-MNIST.

Questions

For any questions, please feel free to raise an issue or email us directly. Our emails can be found on the paper.

Owner
Jishnu Mukhoti
Graduate Student in Computer Science
Jishnu Mukhoti
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Rohit Ingole 2 Mar 24, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
An Implicit Function Theorem (IFT) optimizer for bi-level optimizations

iftopt An Implicit Function Theorem (IFT) optimizer for bi-level optimizations. Requirements Python 3.7+ PyTorch 1.x Installation $ pip install git+ht

The Money Shredder Lab 2 Dec 02, 2021
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022