A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Overview

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0)

Per poter utilizzare il cluster il primo passo è abilitare l'account istituzionale per l'accesso ai sistemi del DISI. Se già attivo, avrai accesso con le credenziali istituzionali, anche in remoto (SSH), a tutte le macchine dei laboratori Ercolani e Ranzani.

La quota studente massima è per ora impostata a 400 MB. In caso di necessità di maggiore spazio potrai ricorrere alla creazione di una cartella in /public/ che viene di norma cancellata ogni prima domenica del mese.

/home/ utente e /public/ sono spazi di archiviazione condivisi tra le macchine, potrai dunque creare l'ambiente di esecuzione e i file necessari all'elaborazione sulla macchina SLURM (slurm.cs.unibo.it) da cui poi avviare il job che verrà eseguito sulle macchine dotate di GPU.

Istruzioni

Una possibile impostazione del lavoro potrebbe essere quella di creare un virtual environment Python inserendo all'interno tutto ciò di cui si ha bisogno e utilizzando pip per l'installazione dei moduli necessari. Le segnalo che per utilizzare Python 3 è necessario invocarlo esplicitamente in quanto sulle macchine il default è Python 2. Nel cluster sono presenti GPU Tesla pilotate con driver Nvidia v. 460.67 e librerie di computazione CUDA 11.2.1, quindi in caso di installazione di pytorch bisognerà utilizzare il comando

pip3 install torch==1.8.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html

Il cluster utilizza uno schedulatore SLURM (https://slurm.schedmd.com/overview.html) per la distribuzione dei job. Per sottomettere un job bisogna predisporre nella propria area di lavoro un file di configurzione SLURM (nell'esempio sotto lo abbiamo nominato script.sbatch).

Dopo le direttive SLURM è possibile inserire comandi di script (ad es. BASH).

#!/bin/bash
#SBATCH --job-name=nomejob
#SBATCH --mail-type=ALL
#SBATCH [email protected]
#SBATCH --time=01:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --output=nomeoutput
#SBATCH --gres=gpu:1

. bin/activate  # per attivare il virtual environment python

python test.py # per lanciare lo script python

Nell'esempio precedente:

  • L'istruzione da tenere immutata è --gres=gpu:1 (ogni nodo di computazione ha un'unica GPU a disposizione e deve essere attivata per poterla utilizzare).
  • Tutte le altre istruzioni di configurazione per SLURM possono essere personalizzate. Per la definizione di queste e altre direttive si rimanda alla documentazione ufficiale di SLURM (https://slurm.schedmd.com/sbatch.html).
  • Nell'esempio, dopo le istruzioni di configurazione di SLURM è stato invocato il programma.

Per poter avviare il job sulle macchine del cluster, è necessario:

  1. accedere via SSH alla macchina slurm.cs.unibo.it con le proprie credenziali;
  2. lanciare il comando sbatch <nomescript>.

Alcune note importanti:

  • saranno inviate e-mail per tutti gli evnti che riguardano il job lanciato, all'indirizzo specificato nelle istruzioni di configurazione (ad esempio al termine del job e nel caso di errori);
  • i risultati dell'elaborazione saranno presenti nel file <nomeoutput> indicato nelle istruzioni di configurazioni;
  • l'esecuzione sulle macchine avviene all'interno dello stesso path relativo che, essendo condiviso, viene visto anche dalle macchine dei laboratori e dalla macchina slurm.
Owner
PhD in Computer Science, Adjunct Professor @ CS department, Bologna
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
DumpSMBShare - A script to dump files and folders remotely from a Windows SMB share

DumpSMBShare A script to dump files and folders remotely from a Windows SMB shar

Podalirius 178 Jan 06, 2023
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022