TransCD: Scene Change Detection via Transformer-based Architecture

Related tags

Deep LearningTransCD
Overview

TransCD: Scene Change Detection via Transformer-based Architecture

image

Requirements

Python 3.7.0  
Pytorch 1.6.0  
Visdom 0.1.8.9  
Torchvision 0.7.0

Datasets

Pretrained Model

Pretrained models for CDNet-2014 and VL-CMU-CD are available. You can download them from the following link.

  • CDNet-2014: [Baiduyun] the password is 78cp. [GoogleDrive].
    • We uploaded six models trained on CDNet-2014 dataset, they are SViT_E1_D1_16, SViT_E1_D1_32, SViT_E4_D4_16, SViT_E4_D4_32, Res_SViT_E1_D1_16 and Res_SViT_E4_D4_16.
  • VL-CMU-CD: [Baiduyun] the password is ydzl. [GoogleDrive].
    • We uploaded four models trained on VL-CMU-CD dataset, ther are SViT_E1_D1_16, SViT_E1_D1_32, Res_SViT_E1_D1_16 and Res_SViT_E1_D1_32.

Test

Before test, please download datasets and predtrained models. Copy pretrained models to folder './dataset_name/outputs/best_weights', and run the following command:

cd TransCD_ROOT
python test.py --net_cfg 
   
     --train_cfg 
    

    
   

Use --save_changemap True to save predicted changemaps. For example:

python test.py --net_cfg SVit_E1_D1_32 --train_cfg CDNet_2014 --save_changemap True

Training

Before training, please download datasets and revise dataset path in configs.py to your path. CD TransCD_ROOT

python -m visdom.server
python train.py --net_cfg 
   
     --train_cfg 
    

    
   

For example:

python -m visdom.server
python train.py --net_cfg Res_SViT_E1_D1_16 --train_cfg VL_CMU_CD

To display training processing, copy 'http://localhost:8097' to your browser.

Citing TransCD

If you use this repository or would like to refer the paper, please use the following BibTex entry.

@inproceddings{TransCD,
title={TransCD: Scene Change Detection via Transformer-based Architecture},
author={ZHIXUE WANG, YU ZHANG*, LIN LUO, NAN WANG},
journal={Optics Express},
yera={2021},
organization={The Optical Society},
}

Reference

-Akcay, Samet, Amir Atapour-Abarghouei, and Toby P. Breckon. "Ganomaly: Semi-supervised anomaly detection via adversarial training." Asian conference on computer vision. Springer, Cham, 2018.
-Chen, Jieneng, et al. "Transunet: Transformers make strong encoders for medical image segmentation." arXiv preprint arXiv:2102.04306 (2021).
Owner
wangzhixue
wangzhixue
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023