Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

Overview

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles

Dependency

  • ROS (tested with Kinetic and Melodic)
  • PCL

Install

Use the following commands to download and compile the package.

cd ~/catkin_ws/src
git clone https://github.com/jkk-research/urban_road_filter
catkin build urban_road_filter

Getting started

Cite & paper

If you use any of this code please consider citing the paper:


@Article{roadfilt2022horv,
    title = {Real-Time LIDAR-Based Urban Road and Sidewalk Detection for Autonomous Vehicles},
    author = {Horváth, Ernő and Pozna, Claudiu and Unger, Miklós},
    journal = {Sensors},
    volume = {22},
    year = {2022},
    number = {1},
    url = {https://www.mdpi.com/1424-8220/22/1/194},
    issn = {1424-8220},
    doi = {10.3390/s22010194}
}

Realated solutions

Videos and images

Comments
  • If the given dataset have a preprocessing?

    If the given dataset have a preprocessing?

    Thanks for your great work! I try to do some experiment on kitti dataset. But I found it does not have the same effect as yours. The blue marks, as shown in the following image, are false positive. I want to wonder if the given dataset have a preprocessing? img

    question 
    opened by LuYoKa 6
  • I need help

    I need help

    Hello, I follow the steps to generate this error. How should I solve it? Thanks Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:75: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/lidar_segmentation.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/lidar_segmentation.cpp.o] Error 4 make[2]: *** 正在等待未完成的任务.... c++: internal compiler error: 已杀死 (program cc1plus) Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:131: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/z_zero_method.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/z_zero_method.cpp.o] Error 4 c++: internal compiler error: 已杀死 (program cc1plus) Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-7/README.Bugs> for instructions. urban_road_filter/CMakeFiles/lidar_road.dir/build.make:89: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/src/main.cpp.o' failed make[2]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/src/main.cpp.o] Error 4 CMakeFiles/Makefile2:2521: recipe for target 'urban_road_filter/CMakeFiles/lidar_road.dir/all' failed make[1]: *** [urban_road_filter/CMakeFiles/lidar_road.dir/all] Error 2 Makefile:145: recipe for target 'all' failed make: *** [all] Error 2 Invoking "make -j8 -l8" failed

    question 
    opened by chaohe1998 2
  • Follow ROS naming conventions

    Follow ROS naming conventions

    • Naming ROS resources: http://wiki.ros.org/ROS/Patterns/Conventions
    • Package naming: https://www.ros.org/reps/rep-0144.html
    • Naming conventions for drivers: https://ros.org/reps/rep-0135.html
    • Parameter namespacing: http://wiki.ros.org/Parameter%20Server

    e.g. visualization_MarkerArray is not a valid topic name

    enhancement 
    opened by horverno 1
  • StarShapedSearch algorithm not functioning properly

    StarShapedSearch algorithm not functioning properly

    The "star shaped search" detection algorithm seems to function with reduced range and [by angle] only in the first quarter of its detection area (counter-clockwise / positive z angles from x-axis, right-handed coordinate-system).

    The images below show the output using only this algorithm (other detection methods, blind spot correction and output polygon simplification turned off).

    [red line = polygon connecting the detected points]

    2

    3

    opened by csaplaci 0
  • Semi-automated vector map building

    Semi-automated vector map building

    New feature:

    Based on the urban_road_filter output a semi-automated vector map building (e.g. lanelet2 / opendrive) in the global frame (e.g. map)

    (small help)

    enhancement feature 
    opened by horverno 1
Releases(paper)
Owner
JKK - Vehicle Industry Research Center
Széchenyi University's Research Center
JKK - Vehicle Industry Research Center
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Datset)

Graphlevel-SSL Overview Apply Graph Self-Supervised Learning methods to graph-level task(TUDataset, MolculeNet Dataset). It is unified framework to co

JunSeok 8 Oct 15, 2021
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022