Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Overview

Real-ESRGAN

Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Ported from https://github.com/xinntao/Real-ESRGAN

Dependencies

  • NumPy
  • PyTorch, preferably with CUDA. Note that torchvision and torchaudio are not required and hence can be omitted from the command.
  • VapourSynth

Installation

pip install --upgrade vsrealesrgan
python -m vsrealesrgan

Usage

from vsrealesrgan import RealESRGAN

ret = RealESRGAN(clip)

See __init__.py for the description of the parameters.

Comments
  • Installing on portable vapoursynth?

    Installing on portable vapoursynth?

    I'm getting this error:

    ` python -m pip install --upgrade vsrealesrgan Collecting vsrealesrgan Using cached vsrealesrgan-3.1.0-py3-none-any.whl (7.4 kB) Collecting tqdm Using cached tqdm-4.64.0-py2.py3-none-any.whl (78 kB) Requirement already satisfied: numpy in d:\vapoursynth\lib\site-packages (from vsrealesrgan) (1.22.3) Collecting VapourSynth>=55 Using cached VapourSynth-58.zip (558 kB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error

    × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [15 lines of output] Traceback (most recent call last): File "C:\Users*\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 64, in dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY) File "C:\Users*\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 38, in query reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ) FileNotFoundError: [WinError 2] The system cannot find the file specified

      During handling of the above exception, another exception occurred:
    
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "C:\Users\**\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 67, in <module>
          raise OSError("Couldn't detect vapoursynth installation path")
      OSError: Couldn't detect vapoursynth installation path
      [end of output]
    

    note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed

    × Encountered error while generating package metadata. ╰─> See above for output.

    note: This is an issue with the package mentioned above, not pip. hint: See above for details. `

    opened by manus693 8
  • 'vapoursynth.VideoFrame' object is not subscriptable

    'vapoursynth.VideoFrame' object is not subscriptable

    Error on frame 15 request: 'vapoursynth.VideoFrame' object is not subscriptable

    py3.6.4 vs.core.version: VapourSynth Video Processing Library\nCopyright (c) 2012-2018 Fredrik Mellbin\nCore R44\nAPI R3.5\nOptions: -\n torch.version: 1.10.0+cu111

    vpy: import vapoursynth as vs import sys sys.path.append("C:\C\Transcoding\VapourSynth\core64\plugins\Scripts") import mvsfunc as mvf sys.path.append(r"C:\Users\liujing\AppData\Local\Programs\Python\Python36\Lib\site-packages\vsrealesrgan") from vsrealesrgan import RealESRGAN

    core = vs.get_core(accept_lowercase=True) source = core.ffms2.Source(sourcename) source = mvf.ToRGB(source,depth=32) source = RealESRGAN(source) source= mvf.ToYUV(source,depth=16) source.set_output()

    opened by splinter21 4
  • TensorRT

    TensorRT "Ran out of input"?

    Using:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import site
    import os
    # Adding torch dependencies to PATH
    path = site.getsitepackages()[0]+'/torch_dependencies/'
    path = path.replace('\\', '/')
    os.environ["PATH"] = path + os.pathsep + os.environ["PATH"]
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/Support/fmtconv.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/vslsmashsource.dll")
    # source: 'G:\TestClips&Co\files\test.avi'
    # current color space: YUV420P8, bit depth: 8, resolution: 640x352, fps: 25, color matrix: 470bg, yuv luminance scale: limited, scanorder: progressive
    # Loading G:\TestClips&Co\files\test.avi using LWLibavSource
    clip = core.lsmas.LWLibavSource(source="G:/TestClips&Co/files/test.avi", format="YUV420P8", stream_index=0, cache=0, prefer_hw=0)
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 25
    clip = core.std.AssumeFPS(clip=clip, fpsnum=25, fpsden=1)
    clip = core.std.SetFrameProp(clip=clip, prop="_FieldBased", intval=0)
    original = clip
    from vsrealesrgan import RealESRGAN
    # adjusting color space from YUV420P8 to RGBH for VsRealESRGAN
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBH, matrix_in_s="470bg", range_s="limited")
    # resizing using RealESRGAN
    clip = RealESRGAN(clip=clip, device_index=0, trt=True, trt_cache_path="G:/Temp", num_streams=4) # 2560x1408
    # resizing 2560x1408 to 640x352
    # adjusting resizing
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, range_s="limited")
    clip = core.fmtc.resample(clip=clip, w=640, h=352, kernel="lanczos", interlaced=False, interlacedd=False)
    original = core.resize.Bicubic(clip=original, width=640, height=352)
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited", dither_type="error_diffusion")
    original = core.text.Text(clip=original,text="Original",scale=1,alignment=7)
    clip = core.text.Text(clip=clip,text="Filtered",scale=1,alignment=7)
    stacked = core.std.StackHorizontal([original,clip])
    # Output
    stacked.set_output()
    

    I get

    Failed to evaluate the script: Python exception: Ran out of input

    Traceback (most recent call last):
    File "src\cython\vapoursynth.pyx", line 2866, in vapoursynth._vpy_evaluate
    File "src\cython\vapoursynth.pyx", line 2867, in vapoursynth._vpy_evaluate
    File "C:\Users\Selur\Desktop\test_2.vpy", line 32, in 
    clip = RealESRGAN(clip=clip, device_index=0, trt=True, trt_cache_path="G:/Temp", num_streams=4) # 2560x1408
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context
    return func(*args, **kwargs)
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsrealesrgan\__init__.py", line 284, in RealESRGAN
    module = [torch.load(trt_engine_path) for _ in range(num_streams)]
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsrealesrgan\__init__.py", line 284, in 
    module = [torch.load(trt_engine_path) for _ in range(num_streams)]
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\serialization.py", line 795, in load
    return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\serialization.py", line 1002, in _legacy_load
    magic_number = pickle_module.load(f, **pickle_load_args)
    EOFError: Ran out of input
    

    Works fine with trt=False.

    ->Any idea what is going wrong there?

    opened by Selur 3
  • [REQ] SwinIR port

    [REQ] SwinIR port

    opened by forart 1
  • Vapoursynth R58 support

    Vapoursynth R58 support

    When trying to install vs-realesrgan in Vapoursynth R58 I get:

    I:\Hybrid\64bit\Vapoursynth>python -m pip install --upgrade vsrealesrgan
    Collecting vsrealesrgan
      Using cached vsrealesrgan-2.0.0-py3-none-any.whl (12 kB)
    Collecting VapourSynth>=55
      Using cached VapourSynth-57.zip (567 kB)
      Preparing metadata (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> [15 lines of output]
          Traceback (most recent call last):
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 64, in <module>
              dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY)
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 38, in query
              reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ)
          FileNotFoundError: [WinError 2] Das System kann die angegebene Datei nicht finden
    
          During handling of the above exception, another exception occurred:
    
          Traceback (most recent call last):
            File "<string>", line 2, in <module>
            File "<pip-setuptools-caller>", line 34, in <module>
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 67, in <module>
              raise OSError("Couldn't detect vapoursynth installation path")
          OSError: Couldn't detect vapoursynth installation path
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    

    any idea how to fix this?

    opened by Selur 0
  • 'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    I have been trying to use this plugin, however I get the below error when trying to preview the video in VapourSynth Editor r19-mod-2-x86_64

    Error on frame 0 request: 'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    The code I am getting this error from is below

    from vapoursynth import core
    from vsrealesrgan import RealESRGAN
    import havsfunc as haf
    import vapoursynth as vs
    video = core.ffms2.Source(source='EDIT.mkv')
    video = haf.QTGMC(video, Preset="slow", MatchPreset="slow", MatchPreset2="slow", SourceMatch=3, TFF=True)
    video = core.std.SelectEvery(clip=video, cycle=2, offsets=0)
    video = core.std.Crop(clip=video, left=8, right=8, top=0, bottom=0)
    video = core.resize.Spline36(clip=video, width=640, height=480)
    video = core.resize.Bicubic(clip=video, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    video = RealESRGAN(clip=video, device_index=0)
    video = core.resize.Bicubic(clip=video, format=vs.YUV420P10, matrix_s="470bg", range_s="limited")
    video = core.resize.Spline36(clip=video, width=1440, height=1080)
    video = core.std.AssumeFPS(clip=video, fpsnum=30000, fpsden=1001)
    video.set_output()
    
    opened by silentsudin 0
Releases(v4.0.1)
Owner
Holy Wu
Holy Wu
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022