Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Overview

Real-ESRGAN

Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Ported from https://github.com/xinntao/Real-ESRGAN

Dependencies

  • NumPy
  • PyTorch, preferably with CUDA. Note that torchvision and torchaudio are not required and hence can be omitted from the command.
  • VapourSynth

Installation

pip install --upgrade vsrealesrgan
python -m vsrealesrgan

Usage

from vsrealesrgan import RealESRGAN

ret = RealESRGAN(clip)

See __init__.py for the description of the parameters.

Comments
  • Installing on portable vapoursynth?

    Installing on portable vapoursynth?

    I'm getting this error:

    ` python -m pip install --upgrade vsrealesrgan Collecting vsrealesrgan Using cached vsrealesrgan-3.1.0-py3-none-any.whl (7.4 kB) Collecting tqdm Using cached tqdm-4.64.0-py2.py3-none-any.whl (78 kB) Requirement already satisfied: numpy in d:\vapoursynth\lib\site-packages (from vsrealesrgan) (1.22.3) Collecting VapourSynth>=55 Using cached VapourSynth-58.zip (558 kB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error

    × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [15 lines of output] Traceback (most recent call last): File "C:\Users*\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 64, in dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY) File "C:\Users*\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 38, in query reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ) FileNotFoundError: [WinError 2] The system cannot find the file specified

      During handling of the above exception, another exception occurred:
    
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "C:\Users\**\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 67, in <module>
          raise OSError("Couldn't detect vapoursynth installation path")
      OSError: Couldn't detect vapoursynth installation path
      [end of output]
    

    note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed

    × Encountered error while generating package metadata. ╰─> See above for output.

    note: This is an issue with the package mentioned above, not pip. hint: See above for details. `

    opened by manus693 8
  • 'vapoursynth.VideoFrame' object is not subscriptable

    'vapoursynth.VideoFrame' object is not subscriptable

    Error on frame 15 request: 'vapoursynth.VideoFrame' object is not subscriptable

    py3.6.4 vs.core.version: VapourSynth Video Processing Library\nCopyright (c) 2012-2018 Fredrik Mellbin\nCore R44\nAPI R3.5\nOptions: -\n torch.version: 1.10.0+cu111

    vpy: import vapoursynth as vs import sys sys.path.append("C:\C\Transcoding\VapourSynth\core64\plugins\Scripts") import mvsfunc as mvf sys.path.append(r"C:\Users\liujing\AppData\Local\Programs\Python\Python36\Lib\site-packages\vsrealesrgan") from vsrealesrgan import RealESRGAN

    core = vs.get_core(accept_lowercase=True) source = core.ffms2.Source(sourcename) source = mvf.ToRGB(source,depth=32) source = RealESRGAN(source) source= mvf.ToYUV(source,depth=16) source.set_output()

    opened by splinter21 4
  • TensorRT

    TensorRT "Ran out of input"?

    Using:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import site
    import os
    # Adding torch dependencies to PATH
    path = site.getsitepackages()[0]+'/torch_dependencies/'
    path = path.replace('\\', '/')
    os.environ["PATH"] = path + os.pathsep + os.environ["PATH"]
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/Support/fmtconv.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/vslsmashsource.dll")
    # source: 'G:\TestClips&Co\files\test.avi'
    # current color space: YUV420P8, bit depth: 8, resolution: 640x352, fps: 25, color matrix: 470bg, yuv luminance scale: limited, scanorder: progressive
    # Loading G:\TestClips&Co\files\test.avi using LWLibavSource
    clip = core.lsmas.LWLibavSource(source="G:/TestClips&Co/files/test.avi", format="YUV420P8", stream_index=0, cache=0, prefer_hw=0)
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 25
    clip = core.std.AssumeFPS(clip=clip, fpsnum=25, fpsden=1)
    clip = core.std.SetFrameProp(clip=clip, prop="_FieldBased", intval=0)
    original = clip
    from vsrealesrgan import RealESRGAN
    # adjusting color space from YUV420P8 to RGBH for VsRealESRGAN
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBH, matrix_in_s="470bg", range_s="limited")
    # resizing using RealESRGAN
    clip = RealESRGAN(clip=clip, device_index=0, trt=True, trt_cache_path="G:/Temp", num_streams=4) # 2560x1408
    # resizing 2560x1408 to 640x352
    # adjusting resizing
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, range_s="limited")
    clip = core.fmtc.resample(clip=clip, w=640, h=352, kernel="lanczos", interlaced=False, interlacedd=False)
    original = core.resize.Bicubic(clip=original, width=640, height=352)
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited", dither_type="error_diffusion")
    original = core.text.Text(clip=original,text="Original",scale=1,alignment=7)
    clip = core.text.Text(clip=clip,text="Filtered",scale=1,alignment=7)
    stacked = core.std.StackHorizontal([original,clip])
    # Output
    stacked.set_output()
    

    I get

    Failed to evaluate the script: Python exception: Ran out of input

    Traceback (most recent call last):
    File "src\cython\vapoursynth.pyx", line 2866, in vapoursynth._vpy_evaluate
    File "src\cython\vapoursynth.pyx", line 2867, in vapoursynth._vpy_evaluate
    File "C:\Users\Selur\Desktop\test_2.vpy", line 32, in 
    clip = RealESRGAN(clip=clip, device_index=0, trt=True, trt_cache_path="G:/Temp", num_streams=4) # 2560x1408
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context
    return func(*args, **kwargs)
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsrealesrgan\__init__.py", line 284, in RealESRGAN
    module = [torch.load(trt_engine_path) for _ in range(num_streams)]
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsrealesrgan\__init__.py", line 284, in 
    module = [torch.load(trt_engine_path) for _ in range(num_streams)]
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\serialization.py", line 795, in load
    return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\serialization.py", line 1002, in _legacy_load
    magic_number = pickle_module.load(f, **pickle_load_args)
    EOFError: Ran out of input
    

    Works fine with trt=False.

    ->Any idea what is going wrong there?

    opened by Selur 3
  • [REQ] SwinIR port

    [REQ] SwinIR port

    opened by forart 1
  • Vapoursynth R58 support

    Vapoursynth R58 support

    When trying to install vs-realesrgan in Vapoursynth R58 I get:

    I:\Hybrid\64bit\Vapoursynth>python -m pip install --upgrade vsrealesrgan
    Collecting vsrealesrgan
      Using cached vsrealesrgan-2.0.0-py3-none-any.whl (12 kB)
    Collecting VapourSynth>=55
      Using cached VapourSynth-57.zip (567 kB)
      Preparing metadata (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> [15 lines of output]
          Traceback (most recent call last):
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 64, in <module>
              dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY)
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 38, in query
              reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ)
          FileNotFoundError: [WinError 2] Das System kann die angegebene Datei nicht finden
    
          During handling of the above exception, another exception occurred:
    
          Traceback (most recent call last):
            File "<string>", line 2, in <module>
            File "<pip-setuptools-caller>", line 34, in <module>
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 67, in <module>
              raise OSError("Couldn't detect vapoursynth installation path")
          OSError: Couldn't detect vapoursynth installation path
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    

    any idea how to fix this?

    opened by Selur 0
  • 'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    I have been trying to use this plugin, however I get the below error when trying to preview the video in VapourSynth Editor r19-mod-2-x86_64

    Error on frame 0 request: 'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    The code I am getting this error from is below

    from vapoursynth import core
    from vsrealesrgan import RealESRGAN
    import havsfunc as haf
    import vapoursynth as vs
    video = core.ffms2.Source(source='EDIT.mkv')
    video = haf.QTGMC(video, Preset="slow", MatchPreset="slow", MatchPreset2="slow", SourceMatch=3, TFF=True)
    video = core.std.SelectEvery(clip=video, cycle=2, offsets=0)
    video = core.std.Crop(clip=video, left=8, right=8, top=0, bottom=0)
    video = core.resize.Spline36(clip=video, width=640, height=480)
    video = core.resize.Bicubic(clip=video, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    video = RealESRGAN(clip=video, device_index=0)
    video = core.resize.Bicubic(clip=video, format=vs.YUV420P10, matrix_s="470bg", range_s="limited")
    video = core.resize.Spline36(clip=video, width=1440, height=1080)
    video = core.std.AssumeFPS(clip=video, fpsnum=30000, fpsden=1001)
    video.set_output()
    
    opened by silentsudin 0
Releases(v4.0.1)
Owner
Holy Wu
Holy Wu
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022