Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Overview

Real-ESRGAN

Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Ported from https://github.com/xinntao/Real-ESRGAN

Dependencies

  • NumPy
  • PyTorch, preferably with CUDA. Note that torchvision and torchaudio are not required and hence can be omitted from the command.
  • VapourSynth

Installation

pip install --upgrade vsrealesrgan
python -m vsrealesrgan

Usage

from vsrealesrgan import RealESRGAN

ret = RealESRGAN(clip)

See __init__.py for the description of the parameters.

Comments
  • Installing on portable vapoursynth?

    Installing on portable vapoursynth?

    I'm getting this error:

    ` python -m pip install --upgrade vsrealesrgan Collecting vsrealesrgan Using cached vsrealesrgan-3.1.0-py3-none-any.whl (7.4 kB) Collecting tqdm Using cached tqdm-4.64.0-py2.py3-none-any.whl (78 kB) Requirement already satisfied: numpy in d:\vapoursynth\lib\site-packages (from vsrealesrgan) (1.22.3) Collecting VapourSynth>=55 Using cached VapourSynth-58.zip (558 kB) Preparing metadata (setup.py) ... error error: subprocess-exited-with-error

    × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [15 lines of output] Traceback (most recent call last): File "C:\Users*\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 64, in dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY) File "C:\Users*\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 38, in query reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ) FileNotFoundError: [WinError 2] The system cannot find the file specified

      During handling of the above exception, another exception occurred:
    
      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "C:\Users\**\AppData\Local\Temp\pip-install-2415kpn4\vapoursynth_712c69d39f4a4718a3f6b523a85b39eb\setup.py", line 67, in <module>
          raise OSError("Couldn't detect vapoursynth installation path")
      OSError: Couldn't detect vapoursynth installation path
      [end of output]
    

    note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed

    × Encountered error while generating package metadata. ╰─> See above for output.

    note: This is an issue with the package mentioned above, not pip. hint: See above for details. `

    opened by manus693 8
  • 'vapoursynth.VideoFrame' object is not subscriptable

    'vapoursynth.VideoFrame' object is not subscriptable

    Error on frame 15 request: 'vapoursynth.VideoFrame' object is not subscriptable

    py3.6.4 vs.core.version: VapourSynth Video Processing Library\nCopyright (c) 2012-2018 Fredrik Mellbin\nCore R44\nAPI R3.5\nOptions: -\n torch.version: 1.10.0+cu111

    vpy: import vapoursynth as vs import sys sys.path.append("C:\C\Transcoding\VapourSynth\core64\plugins\Scripts") import mvsfunc as mvf sys.path.append(r"C:\Users\liujing\AppData\Local\Programs\Python\Python36\Lib\site-packages\vsrealesrgan") from vsrealesrgan import RealESRGAN

    core = vs.get_core(accept_lowercase=True) source = core.ffms2.Source(sourcename) source = mvf.ToRGB(source,depth=32) source = RealESRGAN(source) source= mvf.ToYUV(source,depth=16) source.set_output()

    opened by splinter21 4
  • TensorRT

    TensorRT "Ran out of input"?

    Using:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import site
    import os
    # Adding torch dependencies to PATH
    path = site.getsitepackages()[0]+'/torch_dependencies/'
    path = path.replace('\\', '/')
    os.environ["PATH"] = path + os.pathsep + os.environ["PATH"]
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/Support/fmtconv.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/vslsmashsource.dll")
    # source: 'G:\TestClips&Co\files\test.avi'
    # current color space: YUV420P8, bit depth: 8, resolution: 640x352, fps: 25, color matrix: 470bg, yuv luminance scale: limited, scanorder: progressive
    # Loading G:\TestClips&Co\files\test.avi using LWLibavSource
    clip = core.lsmas.LWLibavSource(source="G:/TestClips&Co/files/test.avi", format="YUV420P8", stream_index=0, cache=0, prefer_hw=0)
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 25
    clip = core.std.AssumeFPS(clip=clip, fpsnum=25, fpsden=1)
    clip = core.std.SetFrameProp(clip=clip, prop="_FieldBased", intval=0)
    original = clip
    from vsrealesrgan import RealESRGAN
    # adjusting color space from YUV420P8 to RGBH for VsRealESRGAN
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBH, matrix_in_s="470bg", range_s="limited")
    # resizing using RealESRGAN
    clip = RealESRGAN(clip=clip, device_index=0, trt=True, trt_cache_path="G:/Temp", num_streams=4) # 2560x1408
    # resizing 2560x1408 to 640x352
    # adjusting resizing
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, range_s="limited")
    clip = core.fmtc.resample(clip=clip, w=640, h=352, kernel="lanczos", interlaced=False, interlacedd=False)
    original = core.resize.Bicubic(clip=original, width=640, height=352)
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited", dither_type="error_diffusion")
    original = core.text.Text(clip=original,text="Original",scale=1,alignment=7)
    clip = core.text.Text(clip=clip,text="Filtered",scale=1,alignment=7)
    stacked = core.std.StackHorizontal([original,clip])
    # Output
    stacked.set_output()
    

    I get

    Failed to evaluate the script: Python exception: Ran out of input

    Traceback (most recent call last):
    File "src\cython\vapoursynth.pyx", line 2866, in vapoursynth._vpy_evaluate
    File "src\cython\vapoursynth.pyx", line 2867, in vapoursynth._vpy_evaluate
    File "C:\Users\Selur\Desktop\test_2.vpy", line 32, in 
    clip = RealESRGAN(clip=clip, device_index=0, trt=True, trt_cache_path="G:/Temp", num_streams=4) # 2560x1408
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context
    return func(*args, **kwargs)
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsrealesrgan\__init__.py", line 284, in RealESRGAN
    module = [torch.load(trt_engine_path) for _ in range(num_streams)]
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsrealesrgan\__init__.py", line 284, in 
    module = [torch.load(trt_engine_path) for _ in range(num_streams)]
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\serialization.py", line 795, in load
    return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
    File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\serialization.py", line 1002, in _legacy_load
    magic_number = pickle_module.load(f, **pickle_load_args)
    EOFError: Ran out of input
    

    Works fine with trt=False.

    ->Any idea what is going wrong there?

    opened by Selur 3
  • [REQ] SwinIR port

    [REQ] SwinIR port

    opened by forart 1
  • Vapoursynth R58 support

    Vapoursynth R58 support

    When trying to install vs-realesrgan in Vapoursynth R58 I get:

    I:\Hybrid\64bit\Vapoursynth>python -m pip install --upgrade vsrealesrgan
    Collecting vsrealesrgan
      Using cached vsrealesrgan-2.0.0-py3-none-any.whl (12 kB)
    Collecting VapourSynth>=55
      Using cached VapourSynth-57.zip (567 kB)
      Preparing metadata (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> [15 lines of output]
          Traceback (most recent call last):
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 64, in <module>
              dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY)
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 38, in query
              reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ)
          FileNotFoundError: [WinError 2] Das System kann die angegebene Datei nicht finden
    
          During handling of the above exception, another exception occurred:
    
          Traceback (most recent call last):
            File "<string>", line 2, in <module>
            File "<pip-setuptools-caller>", line 34, in <module>
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-7_na63f8\vapoursynth_4864864388024a95a1e8b4adda80b293\setup.py", line 67, in <module>
              raise OSError("Couldn't detect vapoursynth installation path")
          OSError: Couldn't detect vapoursynth installation path
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    

    any idea how to fix this?

    opened by Selur 0
  • 'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    I have been trying to use this plugin, however I get the below error when trying to preview the video in VapourSynth Editor r19-mod-2-x86_64

    Error on frame 0 request: 'vapoursynth.VideoFrame' object has no attribute 'get_read_array'

    The code I am getting this error from is below

    from vapoursynth import core
    from vsrealesrgan import RealESRGAN
    import havsfunc as haf
    import vapoursynth as vs
    video = core.ffms2.Source(source='EDIT.mkv')
    video = haf.QTGMC(video, Preset="slow", MatchPreset="slow", MatchPreset2="slow", SourceMatch=3, TFF=True)
    video = core.std.SelectEvery(clip=video, cycle=2, offsets=0)
    video = core.std.Crop(clip=video, left=8, right=8, top=0, bottom=0)
    video = core.resize.Spline36(clip=video, width=640, height=480)
    video = core.resize.Bicubic(clip=video, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    video = RealESRGAN(clip=video, device_index=0)
    video = core.resize.Bicubic(clip=video, format=vs.YUV420P10, matrix_s="470bg", range_s="limited")
    video = core.resize.Spline36(clip=video, width=1440, height=1080)
    video = core.std.AssumeFPS(clip=video, fpsnum=30000, fpsden=1001)
    video.set_output()
    
    opened by silentsudin 0
Releases(v4.0.1)
Owner
Holy Wu
Holy Wu
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023