Multi-scale discriminator feature-wise loss function

Related tags

Deep Learningmdf
Overview

Multi-Scale Discriminative Feature Loss

This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algorithms.

Description

Central to the application of neural networks in image restoration problems, such as single image super resolution, is the choice of a loss function that encourages natural and perceptually pleasing results. We provide a lightweight feature extractor that outperforms state-of-the-art loss functions in single image super resolution, denoising, and JPEG artefact removal. We propose a novel Multi-Scale Discriminative Feature (MDF) loss comprising a series of discriminators, trained to penalize errors introduced by a generator. For further information please refer to the project webpage.

Usage

The code runs in Python3 and Pytorch.

First install the dependencies by running:

pip3 install -r requirements.txt

To run a simple example, optimizing image pixels:

import torch as pt
import torch.optim as optim
import imageio
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable

from mdfloss import MDFLoss


# Set parameters
cuda_available = False
epochs = 25
application = 'Denoising'
image_path = './misc/i10.png'

if application =='SISR':
    path_disc = "./weights/Ds_SISR.pth"
elif application == 'Denoising':
    path_disc = "./weights/Ds_Denoising.pth"
elif application == 'JPEG':
    path_disc = "./weights/Ds_JPEG.pth"

# Read reference images
imgr = imageio.imread(image_path)
imgr = pt.from_numpy(imageio.core.asarray(imgr/255.0))
imgr = imgr.type(dtype=pt.float64)
imgr = imgr.permute(2,0,1)
imgr = imgr.unsqueeze(0).type(pt.FloatTensor)

# Create a noisy image 
imgd = pt.rand(imgr.size())

if cuda_available:
    imgr = imgr.cuda()
    imgd = imgd.cuda()

# Convert images to variables to support gradients
imgrb = Variable( imgr, requires_grad = False)
imgdb = Variable( imgd, requires_grad = True)

optimizer = optim.Adam([imgdb], lr=0.1)

# Initialise the loss
criterion = MDFLoss(path_disc, cuda_available=cuda_available)

# Iterate over the epochs optimizing for the noisy image
for ii in range(0,epochs):
    
    optimizer.zero_grad()
    loss = criterion(imgrb,imgdb) 
    print("Epoch: ",ii," loss: ", loss.item())
    loss.backward()
    optimizer.step()

Citing

If using, please cite:

@article{mustafa2021training,
  title={Training a Better Loss Function for Image Restoration},
  author={Mustafa, Aamir and Mikhailiuk, Aliaksei and Iliescu, Dan Andrei and Babbar, Varun and Mantiuk, Rafal K},
  journal={arXiv preprint arXiv:2103.14616},
  year={2021}
}

Acknowledgement

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement N◦ 725253–EyeCode).

Owner
Graphics and Displays group - University of Cambridge
Graphics and Displays group - University of Cambridge
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022