Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Overview

Space-Time Correspondence as a Contrastive Random Walk

This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at NeurIPS 2020.

[Paper] [Project Page] [Slides] [Poster] [Talk]

@inproceedings{jabri2020walk,
    Author = {Allan Jabri and Andrew Owens and Alexei A. Efros},
    Title = {Space-Time Correspondence as a Contrastive Random Walk},
    Booktitle = {Advances in Neural Information Processing Systems},
    Year = {2020},
}

Consider citing our work or acknowledging this repository if you found this code to be helpful :)

Requirements

  • pytorch (>1.3)
  • torchvision (0.6.0)
  • cv2
  • matplotlib
  • skimage
  • imageio

For visualization (--visualize):

  • wandb
  • visdom
  • sklearn

Train

An example training command is:

python -W ignore train.py --data-path /path/to/kinetics/ \
--frame-aug grid --dropout 0.1 --clip-len 4 --temp 0.05 \
--model-type scratch --workers 16 --batch-size 20  \
--cache-dataset --data-parallel --visualize --lr 0.0001

This yields a model with performance on DAVIS as follows (see below for evaluation instructions), provided as pretrained.pth:

 J&F-Mean    J-Mean  J-Recall  J-Decay    F-Mean  F-Recall   F-Decay
  0.67606  0.645902  0.758043   0.2031  0.706219   0.83221  0.246789

Arguments of interest:

  • --dropout: The rate of edge dropout (default 0.1).
  • --clip-len: Length of video sequence.
  • --temp: Softmax temperature.
  • --model-type: Type of encoder. Use scratch or scratch_zeropad if training from scratch. Use imagenet18 to load an Imagenet-pretrained network. Use scratch with --resume if reloading a checkpoint.
  • --batch-size: I've managed to train models with batch sizes between 6 and 24. If you have can afford a larger batch size, consider increasing the --lr from 0.0001 to 0.0003.
  • --frame-aug: grid samples a grid of patches to get nodes; none will just use a single image and use embeddings in the feature map as nodes.
  • --visualize: Log diagonistics to wandb and data visualizations to visdom.

Data

We use the official torchvision.datasets.Kinetics400 class for training. You can find directions for downloading Kinetics here. In particular, the code expects the path given for kinetics to contain a train_256 subdirectory.

You can also provide --data-path with a file with a list of directories of images, or a path to a directory of directory of images. In this case, clips are randomly subsampled from the directory.

Visualization

By default, the training script will log diagnostics to wandb and data visualizations to visdom.

Pretrained Model

You can find the model resulting from the training command above at pretrained.pth. We are still training updated ablation models and will post them when ready.


Evaluation: Label Propagation

The label propagation algorithm is described in test.py. The output of test.py (predicted label maps) must be post-processed for evaluation.

DAVIS

To evaluate a trained model on the DAVIS task, clone the davis2017-evaluation repository, and prepare the data by downloading the 2017 dataset and modifying the paths provided in eval/davis_vallist.txt. Then, run:

Label Propagation:

python test.py --filelist /path/to/davis/vallist.txt \
--model-type scratch --resume ../pretrained.pth --save-path /save/path \
--topk 10 --videoLen 20 --radius 12  --temperature 0.05  --cropSize -1

Though test.py expects a model file created with train.py, it can easily be modified to be used with other networks. Note that we simply use the same temperature used at training time.

You can also run the ImageNet baseline with the command below.

python test.py --filelist /path/to/davis/vallist.txt \
--model-type imagenet18 --save-path /save/path \
--topk 10 --videoLen 20 --radius 12  --temperature 0.05  --cropSize -1

Post-Process:

# Convert
python eval/convert_davis.py --in_folder /save/path/ --out_folder /converted/path --dataset /davis/path/

# Compute metrics
python /path/to/davis2017-evaluation/evaluation_method.py \
--task semi-supervised   --results_path /converted/path --set val \
--davis_path /path/to/davis/

You can generate the above commands with the script below, where removing --dryrun will actually run them in sequence.

python eval/run_test.py --model-path /path/to/model --L 20 --K 10  --T 0.05 --cropSize -1 --dryrun

Test-time Adaptation

To do.

A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022