[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

Overview

DeepDeform (CVPR'2020)

DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow images and 4,479 foreground object masks. We also provide 149,228 sparse match annotations and 63,512 occlusion point annotations.

Download Data

If you would like to download the DeepDeform data, please fill out this google form and, once accepted, we will send you the link to download the data.

Online Benchmark

If you want to participate in the benchmark(s), you can submit your results at DeepDeform Benchmark website.

Currently we provide benchmarks for the following tasks:

By uploading your results on the test set to the DeepDeform Benchmark website the performance of you method is automatically evaluated on the hidden test labels, and compared to other already evaluated methods. You can decide if you want to make the evaluation results public or not.

If you want to evaluate on validation set, we provide code that is used for evaluation of specific benchmarks in directory evaluation/. To evaluate optical flow or non-rigid reconstruction, you need to adapt FLOW_RESULTS_DIR or RECONSTRUCTION_RESULTS_DIR in config.py to correspond to your results directory (that would be in the same format as for the online submission, described here).

In order to evaluate reconstruction, you need to compile additional C++ modules.

  • Install necessary dependencies:
pip install pybind11
pip install Pillow
pip install plyfile
pip install tqdm
pip install scikit-image
  • Inside the evaluation/csrc adapt includes.py to point to your Eigen include directory.

  • Compile the code by executing the following in evaluation/csrc:

python setup.py install

Data Organization

Data is organized into 3 subsets, train, val, and test directories, using 340-30-30 sequence split. In every subset each RGB-D sequence is stored in a directory <sequence_id>, which follows the following format:

<sequence_id>
|-- <color>: color images for every frame (`%06d.jpg`)
|-- <depth>: depth images for every frame (`%06d.png`)
|-- <mask>: mask images for a few frames (`%06d.png`)
|-- <optical_flow>: optical flow images for a few frame pairs (`<object_id>_<source_id>_<target_id>.oflow` or `%s_%06d_%06d.oflow`)
|-- <scene_flow>: scene flow images for a few frame pairs (`<object_id>_<source_id>_<target_id>.sflow` or `%s_%06d_%06d.sflow`)
|-- <intrinsics.txt>: 4x4 intrinsics matrix

All labels are provided in .json files in root dataset r directory:

  • train_matches.json and val_matches.json:
    Manually annotated sparse matches.
  • train_dense.json and val_dense.json:
    Densely aligned optical and scene flow images with the use of sparse matches as a guidance.
  • train_selfsupervised.json and val_selfsupervised.json:
    Densely aligned optical and scene flow images using self-supervision (DynamicFusion pipeline) for a few sequences. - train_selfsupervised.json and `val_skaldir
  • train_masks.json and val_masks.json:
    Dynamic object annotations for a few frames per sequence.
  • train_occlusions.json and val_occlusions.json:
    Manually annotated sparse occlusions.

Data Formats

We recommend you to test out scripts in demo/ directory in order to check out loading of different file types.

RGB-D Data: 3D data is provided as RGB-D video sequences, where color and depth images are already aligned. Color images are provided as 8-bit RGB .jpg, and depth images as 16-bit .png (divide by 1000 to obtain depth in meters).

Camera Parameters: A 4x4 intrinsic matrix is given for every sequence (because different cameras were used for data capture, every sequence can have different intrinsic matrix). Since the color and depth images are aligned, no extrinsic transformation is necessary.

Optical Flow Data: Dense optical flow data is provided as custom binary image of resolution 640x480 with extension .oflow. Every pixel contains two values for flow in x and y direction, in pixels. Helper function to load/store binary flow images is provided in utils.py.

Scene Flow Data: Dense scene flow data is provided as custom binary image of resolution 640x480 with extension .sflow. Every pixel contains 3 values for flow in x, y and z direction, in meters. Helper function to load/store binary flow images is provided in utils.py.

Object Mask Data: A few frames per sequences also include foreground dynamic object annotation. The mask image is given as 16-bit .png image (1 for object, 0 for background).

Sparse Match Annotations: We provide manual sparse match annotations for a few frame pairs for every sequence. They are stored in .json format, with paths to corresponding source and target RGB-D frames, as a list of source and target pixels.

Sparse Occlusion Annotations: We provide manual sparse occlusion annotations for a few frame pairs for every sequence. They are stored in .json format, with paths to corresponding source and target RGB-D frames, as a list of occluded pixels in source frame.

Citation

If you use DeepDeform data or code please cite:

@inproceedings{bozic2020deepdeform, 
    title={DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data}, 
    author={Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Zollh{\"o}fer, Michael and Theobalt, Christian and Nie{\ss}ner, Matthias}, 
    journal={Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year={2020}
}

Help

If you have any questions, please contact us at [email protected], or open an issue at Github.

License

The data is released under DeepDeform Terms of Use, and the code is release under a non-comercial creative commons license.

Owner
Aljaz Bozic
PhD Student at Visual Computing Group
Aljaz Bozic
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Code for Robust Contrastive Learning against Noisy Views

Robust Contrastive Learning against Noisy Views This repository provides a PyTorch implementation of the Robust InfoNCE loss proposed in paper Robust

Ching-Yao Chuang 53 Jan 08, 2023
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022