Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Related tags

Deep LearningMADA
Overview

Multi-Anchor Active Domain Adaptation for Semantic Segmentation

Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Yefeng Zheng

paper

Table of Contents

Introduction

This respository contains the MADA method as described in the ICCV 2021 Oral paper "Multi-Anchor Active Domain Adaptation for Semantic Segmentation".

Requirements

The code requires Pytorch >= 0.4.1 with python 3.6. The code is trained using a NVIDIA Tesla V100 with 32 GB memory. You can simply reduce the batch size in stage 2 to run on a smaller memory.

Usage

  1. Preparation:
  • Download the GTA5 dataset as the source domain, and the Cityscapes dataset as the target domain.
  • Download the weights and features. Move features to the MADA directory.
  1. Setup the config files.
  • Set the data paths
  • Set the pretrained model paths
  1. Training-quick
  • To run the code with our weights and anchors (anchors/cluster_centroids_full_10.pkl):
python3 train_active_stage1.py
python3 train_active_stage2.py
  • During the training, the generated files (log file) will be written in the folder 'runs/..'.
  1. Evaluation
  • Set the config file for test (configs/test_from_city_to_gta.yml):
  • Run:
python3 test.py

to see the results.

  1. Training-whole process
  • Setting the config files.
  • Stage 1:
  • 1-save_feat_source.py: get the './features/full_dataset_objective_vectors.pkl'
python3 save_feat_source.py
  • 2-cluster_anchors_source.py: cluster the './features/full_dataset_objective_vectors.pkl' to './anchors/cluster_centroids_full_10.pkl'
python3 cluster_anchors_source.py
  • 3-select_active_samples.py: select active samples with './anchors/cluster_centroids_full_10.pkl' to 'stage1_cac_list_0.05.txt'
python3 select_active_samples.py
  • 4-train_active_stage1.py: train stage1 model with anchors './anchors/cluster_centroids_full_10.pkl' and active samples 'stage1_cac_list_0.05.txt', get the 'from_gta5_to_cityscapes_on_deeplab101_best_model_stage1.pkl', which is stored in the runs/active_from_gta_to_city_stage1
python3 train_active_stage1.py
  • Stage 2:
  • 1-save_feat_target.py: get the './features/target_full_dataset_objective_vectors.pkl.pkl'
python3 save_feat_target.py
  • 2-cluster_anchors_target.py: cluster the './features/target_full_dataset_objective_vectors.pkl' to './anchors/cluster_centroids_full_target_10.pkl'
python3 cluster_anchors_target.py
  • 3-train_active_stage2.py: train stage2 model with anchors './anchors/cluster_centroids_full_target_10.pkl' and active samples 'stage1_cac_list_0.05.txt', get the 'from_gta5_to_cityscapes_on_deeplab101_best_model_stage2.pkl'
python3 train_active_stage2.py

License

MIT

The code is heavily borrowed from the CAG_UDA (https://github.com/RogerZhangzz/CAG_UDA).

If you use this code and find it usefule, please cite:

@inproceedings{ning2021multi,
  title={Multi-Anchor Active Domain Adaptation for Semantic Segmentation},
  author={Ning, Munan and Lu, Donghuan and Wei, Dong and Bian, Cheng and Yuan, Chenglang and Yu, Shuang and Ma, Kai and Zheng, Yefeng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9112--9122},
  year={2021}
}

Notes

The anchors are calcuated based on features captured by decoders.

In this paper, we utilize the more powerful decoder in DeeplabV3+, it may cause somewhere unfair. So we strongly recommend the ProDA which utilize origin DeeplabV2 decoder.

Owner
Munan Ning
Munan Ning
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022