MPViT:Multi-Path Vision Transformer for Dense Prediction

Overview

MPViT : Multi-Path Vision Transformer for Dense Prediction

This repository inlcudes official implementations and model weights for MPViT.

[Arxiv] [BibTeX]

MPViT : Multi-Path Vision Transformer for Dense Prediction
๐Ÿ›๏ธ ๏ธ๏ธ ๐Ÿซ Youngwan Lee, ๐Ÿ›๏ธ ๏ธ๏ธJonghee Kim, ๐Ÿซ Jeff Willette, ๐Ÿซ Sung Ju Hwang
ETRI ๐Ÿ›๏ธ ๏ธ, KAIST ๐Ÿซ

Abstract

We explore multi-scale patch embedding and multi-path structure, constructing the Multi-Path Vision Transformer (MPViT). MPViT embeds features of the same size (i.e., sequence length) with patches of different scales simultaneously by using overlapping convolutional patch embedding. Tokens of different scales are then independently fed into the Transformer encoders via multiple paths and the resulting features are aggregated, enabling both fine and coarse feature representations at the same feature level. Thanks to the diverse and multi-scale feature representations, our MPViTs scaling from Tiny(5M) to Base(73M) consistently achieve superior performance over state-of-the-art Vision Transformers on ImageNet classification, object detection, instance segmentation, and semantic segmentation. These extensive results demonstrate that MPViT can serve as a versatile backbone network for various vision tasks.

Main results on ImageNet-1K

๐Ÿš€ These all models are trained on ImageNet-1K with the same training recipe as DeiT and CoaT.

model resolution [email protected] #params FLOPs weight
MPViT-T 224x224 78.2 5.8M 1.6G weight
MPViT-XS 224x224 80.9 10.5M 2.9G weight
MPViT-S 224x224 83.0 22.8M 4.7G weight
MPViT-B 224x224 84.3 74.8M 16.4G weight

Main results on COCO object detection

๐Ÿš€ All model are trained using ImageNet-1K pretrained weights.

โ˜€๏ธ MS denotes the same multi-scale training augmentation as in Swin-Transformer which follows the MS augmentation as in DETR and Sparse-RCNN. Therefore, we also follows the official implementation of DETR and Sparse-RCNN which are also based on Detectron2.

Please refer to detectron2/ for the details.

Backbone Method lr Schd box mAP mask mAP #params FLOPS weight
MPViT-T RetinaNet 1x 41.8 - 17M 196G model | metrics
MPViT-XS RetinaNet 1x 43.8 - 20M 211G model | metrics
MPViT-S RetinaNet 1x 45.7 - 32M 248G model | metrics
MPViT-B RetinaNet 1x 47.0 - 85M 482G model | metrics
MPViT-T RetinaNet MS+3x 44.4 - 17M 196G model | metrics
MPViT-XS RetinaNet MS+3x 46.1 - 20M 211G model | metrics
MPViT-S RetinaNet MS+3x 47.6 - 32M 248G model | metrics
MPViT-B RetinaNet MS+3x 48.3 - 85M 482G model | metrics
MPViT-T Mask R-CNN 1x 42.2 39.0 28M 216G model | metrics
MPViT-XS Mask R-CNN 1x 44.2 40.4 30M 231G model | metrics
MPViT-S Mask R-CNN 1x 46.4 42.4 43M 268G model | metrics
MPViT-B Mask R-CNN 1x 48.2 43.5 95M 503G model | metrics
MPViT-T Mask R-CNN MS+3x 44.8 41.0 28M 216G model | metrics
MPViT-XS Mask R-CNN MS+3x 46.6 42.3 30M 231G model | metrics
MPViT-S Mask R-CNN MS+3x 48.4 43.9 43M 268G model | metrics
MPViT-B Mask R-CNN MS+3x 49.5 44.5 95M 503G model | metrics

Deformable-DETR

All models are trained using the same training recipe.

Please refer to deformable_detr/ for the details.

backbone box mAP epochs link
ResNet-50 44.5 50 -
CoaT-lite S 47.0 50 link
CoaT-S 48.4 50 link
MPViT-S 49.0 50 link

Main results on ADE20K Semantic segmentation

All model are trained using ImageNet-1K pretrained weight.

Please refer to semantic_segmentation/ for the details.

Backbone Method Crop Size Lr Schd mIoU #params FLOPs weight
MPViT-S UperNet 512x512 160K 48.3 52M 943G weight
MPViT-B UperNet 512x512 160K 50.3 105M 1185G weight

Getting Started

โœ‹ We use pytorch==1.7.0 torchvision==0.8.1 cuda==10.1 libraries on NVIDIA V100 GPUs. If you use different versions of cuda, you may obtain different accuracies, but the differences are negligible.

Acknowledgement

This repository is built using the Timm library, DeiT, CoaT, Detectron2, mmsegmentation repositories.

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-00004, Development of Previsional Intelligence based on Long-term Visual Memory Network and No. 2014-3-00123, Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis).

License

Please refer to MPViT LSA.

Citing MPViT

@article{lee2021mpvit,
      title={MPViT: Multi-Path Vision Transformer for Dense Prediction}, 
      author={Youngwan Lee and Jonghee Kim and Jeff Willette and Sung Ju Hwang},
      year={2021},
      journal={arXiv preprint arXiv:2112.11010}
}
Owner
Youngwan Lee
Researcher at ETRI & Ph.D student in Graduate school of AI at KAIST.
Youngwan Lee
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
A high performance implementation of HDBSCAN clustering.

HDBSCAN HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates

2.3k Jan 02, 2023
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022