MPViT:Multi-Path Vision Transformer for Dense Prediction

Overview

MPViT : Multi-Path Vision Transformer for Dense Prediction

This repository inlcudes official implementations and model weights for MPViT.

[Arxiv] [BibTeX]

MPViT : Multi-Path Vision Transformer for Dense Prediction
🏛️ ️️ 🏫 Youngwan Lee, 🏛️ ️️Jonghee Kim, 🏫 Jeff Willette, 🏫 Sung Ju Hwang
ETRI 🏛️ ️, KAIST 🏫

Abstract

We explore multi-scale patch embedding and multi-path structure, constructing the Multi-Path Vision Transformer (MPViT). MPViT embeds features of the same size (i.e., sequence length) with patches of different scales simultaneously by using overlapping convolutional patch embedding. Tokens of different scales are then independently fed into the Transformer encoders via multiple paths and the resulting features are aggregated, enabling both fine and coarse feature representations at the same feature level. Thanks to the diverse and multi-scale feature representations, our MPViTs scaling from Tiny(5M) to Base(73M) consistently achieve superior performance over state-of-the-art Vision Transformers on ImageNet classification, object detection, instance segmentation, and semantic segmentation. These extensive results demonstrate that MPViT can serve as a versatile backbone network for various vision tasks.

Main results on ImageNet-1K

🚀 These all models are trained on ImageNet-1K with the same training recipe as DeiT and CoaT.

model resolution [email protected] #params FLOPs weight
MPViT-T 224x224 78.2 5.8M 1.6G weight
MPViT-XS 224x224 80.9 10.5M 2.9G weight
MPViT-S 224x224 83.0 22.8M 4.7G weight
MPViT-B 224x224 84.3 74.8M 16.4G weight

Main results on COCO object detection

🚀 All model are trained using ImageNet-1K pretrained weights.

☀️ MS denotes the same multi-scale training augmentation as in Swin-Transformer which follows the MS augmentation as in DETR and Sparse-RCNN. Therefore, we also follows the official implementation of DETR and Sparse-RCNN which are also based on Detectron2.

Please refer to detectron2/ for the details.

Backbone Method lr Schd box mAP mask mAP #params FLOPS weight
MPViT-T RetinaNet 1x 41.8 - 17M 196G model | metrics
MPViT-XS RetinaNet 1x 43.8 - 20M 211G model | metrics
MPViT-S RetinaNet 1x 45.7 - 32M 248G model | metrics
MPViT-B RetinaNet 1x 47.0 - 85M 482G model | metrics
MPViT-T RetinaNet MS+3x 44.4 - 17M 196G model | metrics
MPViT-XS RetinaNet MS+3x 46.1 - 20M 211G model | metrics
MPViT-S RetinaNet MS+3x 47.6 - 32M 248G model | metrics
MPViT-B RetinaNet MS+3x 48.3 - 85M 482G model | metrics
MPViT-T Mask R-CNN 1x 42.2 39.0 28M 216G model | metrics
MPViT-XS Mask R-CNN 1x 44.2 40.4 30M 231G model | metrics
MPViT-S Mask R-CNN 1x 46.4 42.4 43M 268G model | metrics
MPViT-B Mask R-CNN 1x 48.2 43.5 95M 503G model | metrics
MPViT-T Mask R-CNN MS+3x 44.8 41.0 28M 216G model | metrics
MPViT-XS Mask R-CNN MS+3x 46.6 42.3 30M 231G model | metrics
MPViT-S Mask R-CNN MS+3x 48.4 43.9 43M 268G model | metrics
MPViT-B Mask R-CNN MS+3x 49.5 44.5 95M 503G model | metrics

Deformable-DETR

All models are trained using the same training recipe.

Please refer to deformable_detr/ for the details.

backbone box mAP epochs link
ResNet-50 44.5 50 -
CoaT-lite S 47.0 50 link
CoaT-S 48.4 50 link
MPViT-S 49.0 50 link

Main results on ADE20K Semantic segmentation

All model are trained using ImageNet-1K pretrained weight.

Please refer to semantic_segmentation/ for the details.

Backbone Method Crop Size Lr Schd mIoU #params FLOPs weight
MPViT-S UperNet 512x512 160K 48.3 52M 943G weight
MPViT-B UperNet 512x512 160K 50.3 105M 1185G weight

Getting Started

We use pytorch==1.7.0 torchvision==0.8.1 cuda==10.1 libraries on NVIDIA V100 GPUs. If you use different versions of cuda, you may obtain different accuracies, but the differences are negligible.

Acknowledgement

This repository is built using the Timm library, DeiT, CoaT, Detectron2, mmsegmentation repositories.

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-00004, Development of Previsional Intelligence based on Long-term Visual Memory Network and No. 2014-3-00123, Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis).

License

Please refer to MPViT LSA.

Citing MPViT

@article{lee2021mpvit,
      title={MPViT: Multi-Path Vision Transformer for Dense Prediction}, 
      author={Youngwan Lee and Jonghee Kim and Jeff Willette and Sung Ju Hwang},
      year={2021},
      journal={arXiv preprint arXiv:2112.11010}
}
Owner
Youngwan Lee
Researcher at ETRI & Ph.D student in Graduate school of AI at KAIST.
Youngwan Lee
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023