MPViT:Multi-Path Vision Transformer for Dense Prediction

Overview

MPViT : Multi-Path Vision Transformer for Dense Prediction

This repository inlcudes official implementations and model weights for MPViT.

[Arxiv] [BibTeX]

MPViT : Multi-Path Vision Transformer for Dense Prediction
🏛️ ️️ 🏫 Youngwan Lee, 🏛️ ️️Jonghee Kim, 🏫 Jeff Willette, 🏫 Sung Ju Hwang
ETRI 🏛️ ️, KAIST 🏫

Abstract

We explore multi-scale patch embedding and multi-path structure, constructing the Multi-Path Vision Transformer (MPViT). MPViT embeds features of the same size (i.e., sequence length) with patches of different scales simultaneously by using overlapping convolutional patch embedding. Tokens of different scales are then independently fed into the Transformer encoders via multiple paths and the resulting features are aggregated, enabling both fine and coarse feature representations at the same feature level. Thanks to the diverse and multi-scale feature representations, our MPViTs scaling from Tiny(5M) to Base(73M) consistently achieve superior performance over state-of-the-art Vision Transformers on ImageNet classification, object detection, instance segmentation, and semantic segmentation. These extensive results demonstrate that MPViT can serve as a versatile backbone network for various vision tasks.

Main results on ImageNet-1K

🚀 These all models are trained on ImageNet-1K with the same training recipe as DeiT and CoaT.

model resolution [email protected] #params FLOPs weight
MPViT-T 224x224 78.2 5.8M 1.6G weight
MPViT-XS 224x224 80.9 10.5M 2.9G weight
MPViT-S 224x224 83.0 22.8M 4.7G weight
MPViT-B 224x224 84.3 74.8M 16.4G weight

Main results on COCO object detection

🚀 All model are trained using ImageNet-1K pretrained weights.

☀️ MS denotes the same multi-scale training augmentation as in Swin-Transformer which follows the MS augmentation as in DETR and Sparse-RCNN. Therefore, we also follows the official implementation of DETR and Sparse-RCNN which are also based on Detectron2.

Please refer to detectron2/ for the details.

Backbone Method lr Schd box mAP mask mAP #params FLOPS weight
MPViT-T RetinaNet 1x 41.8 - 17M 196G model | metrics
MPViT-XS RetinaNet 1x 43.8 - 20M 211G model | metrics
MPViT-S RetinaNet 1x 45.7 - 32M 248G model | metrics
MPViT-B RetinaNet 1x 47.0 - 85M 482G model | metrics
MPViT-T RetinaNet MS+3x 44.4 - 17M 196G model | metrics
MPViT-XS RetinaNet MS+3x 46.1 - 20M 211G model | metrics
MPViT-S RetinaNet MS+3x 47.6 - 32M 248G model | metrics
MPViT-B RetinaNet MS+3x 48.3 - 85M 482G model | metrics
MPViT-T Mask R-CNN 1x 42.2 39.0 28M 216G model | metrics
MPViT-XS Mask R-CNN 1x 44.2 40.4 30M 231G model | metrics
MPViT-S Mask R-CNN 1x 46.4 42.4 43M 268G model | metrics
MPViT-B Mask R-CNN 1x 48.2 43.5 95M 503G model | metrics
MPViT-T Mask R-CNN MS+3x 44.8 41.0 28M 216G model | metrics
MPViT-XS Mask R-CNN MS+3x 46.6 42.3 30M 231G model | metrics
MPViT-S Mask R-CNN MS+3x 48.4 43.9 43M 268G model | metrics
MPViT-B Mask R-CNN MS+3x 49.5 44.5 95M 503G model | metrics

Deformable-DETR

All models are trained using the same training recipe.

Please refer to deformable_detr/ for the details.

backbone box mAP epochs link
ResNet-50 44.5 50 -
CoaT-lite S 47.0 50 link
CoaT-S 48.4 50 link
MPViT-S 49.0 50 link

Main results on ADE20K Semantic segmentation

All model are trained using ImageNet-1K pretrained weight.

Please refer to semantic_segmentation/ for the details.

Backbone Method Crop Size Lr Schd mIoU #params FLOPs weight
MPViT-S UperNet 512x512 160K 48.3 52M 943G weight
MPViT-B UperNet 512x512 160K 50.3 105M 1185G weight

Getting Started

We use pytorch==1.7.0 torchvision==0.8.1 cuda==10.1 libraries on NVIDIA V100 GPUs. If you use different versions of cuda, you may obtain different accuracies, but the differences are negligible.

Acknowledgement

This repository is built using the Timm library, DeiT, CoaT, Detectron2, mmsegmentation repositories.

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-00004, Development of Previsional Intelligence based on Long-term Visual Memory Network and No. 2014-3-00123, Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis).

License

Please refer to MPViT LSA.

Citing MPViT

@article{lee2021mpvit,
      title={MPViT: Multi-Path Vision Transformer for Dense Prediction}, 
      author={Youngwan Lee and Jonghee Kim and Jeff Willette and Sung Ju Hwang},
      year={2021},
      journal={arXiv preprint arXiv:2112.11010}
}
Owner
Youngwan Lee
Researcher at ETRI & Ph.D student in Graduate school of AI at KAIST.
Youngwan Lee
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022