AI pipelines for Nvidia Jetson Platform

Overview

Jetson Multicamera Pipelines

Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project:

  • Builds a typical multi-camera pipeline, i.e. N×(capture)->preprocess->batch->DNN-> <<your application logic here>> ->encode->file I/O + display. Uses gstreamer and deepstream under-the-hood.
  • Gives programatic acces to configure the pipeline in python via jetmulticam package.
  • Utilizes Nvidia HW accleration for minimal CPU usage. For example, you can perform object detection in real-time on 6 camera streams using as little as 16.5% CPU. See benchmarks below for details.

Demos

You can easily build your custom logic in python by accessing image data (via np.array), as well object detection results. See examples of person following below:

DashCamNet (DLA0) + PeopleNet (DLA1) on 3 camera streams.

We have 3 intependent cameras with ~270° field of view. Red Boxes correspond to DashCamNet detections, green ones to PeopleNet. The PeopleNet detections are used to perform person following logic.

demo_8_follow_me.mp4

PeopleNet (GPU) on 3 cameras streams.

Robot is operated in manual mode.

demo_9_security_nvidia.mp4

DashCamNet (GPU) on 3 camera streams.

Robot is operated in manual mode.

demo_1_fedex_driver.mp4

(All demos are performed in real-time onboard Nvidia Jetson Xavier NX)

Quickstart

Install:

git clone https://github.com/NVIDIA-AI-IOT/jetson-multicamera-pipelines.git
cd jetson-multicamera-pipelines
bash scripts/install-dependencies.sh
pip3 install .

Run example with your cameras:

source scripts/env_vars.sh 
cd examples
python3 example.py

Usage example

import time
from jetmulticam import CameraPipelineDNN
from jetmulticam.models import PeopleNet, DashCamNet

if __name__ == "__main__":

    pipeline = CameraPipelineDNN(
        cameras=[2, 5, 8],
        models=[
            PeopleNet.DLA1,
            DashCamNet.DLA0,
            # PeopleNet.GPU
        ],
        save_video=True,
        save_video_folder="/home/nx/logs/videos",
        display=True,
    )

    while pipeline.running():
        arr = pipeline.images[0] # np.array with shape (1080, 1920, 3), i.e. (1080p RGB image)
        dets = pipeline.detections[0] # Detections from the DNNs
        time.sleep(1/30)

Benchmarks

# Scenario # cams CPU util.
(jetmulticam)
CPU util.
(nvargus-deamon)
CPU
total
GPU % EMC util % Power draw Inference Hardware
1. 1xGMSL -> 2xDNNs + disp + encode 1 5.3% 4% 9.3% <3% 57% 8.5W DLA0: PeopleNet DLA1: DashCamNet
2. 2xGMSL -> 2xDNNs + disp + encode 2 7.2% 7.7% 14.9% <3% 62% 9.4W DLA0: PeopleNet DLA1: DashCamNet
3. 3xGMSL -> 2xDNNs + disp + encode 3 9.2% 11.3% 20.5% <3% 68% 10.1W DLA0: PeopleNet DLA1: DashCamNet
4. Same as #3 with CPU @ 1.9GHz 3 7.5% 9.0% <3% 68% 10.4w DLA0: PeopleNet DLA1: DashCamNet
5. 3xGMSL+2xV4L -> 2xDNNs + disp + encode 5 9.5% 11.3% 20.8% <3% 45% 9.1W DLA0: PeopleNet (interval=1) DLA1: DashCamNet (interval=1)
6. 3xGMSL+2xV4L -> 2xDNNs + disp + encode 5 8.3% 11.3% 19.6% <3% 25% 7.5W DLA0: PeopleNet (interval=6) DLA1: DashCamNet (interval=6)
7. 3xGMSL -> DNN + disp + encode 5 10.3% 12.8% 23.1% 99% 25% 15W GPU: PeopleNet

Notes:

  • All figures are in 15W 6 core mode. To reproduce do: sudo nvpmodel -m 2; sudo jetson_clocks;
  • Test platform: Jetson Xavier NX and XNX Box running JetPack v4.5.1
  • The residual GPU usage in DLA-accelerated nets is caused by Sigmoid activations being computed with CUDA backend. Remaining layers are computed on DLA.
  • CPU usage will vary depending on factors such as camera resolution, framerate, available video formats and driver implementation.

More

Supported models / acceleratorss

pipeline = CameraPipelineDNN(
    cam_ids = [0, 1, 2]
    models=[
        models.PeopleNet.DLA0,
        models.PeopleNet.DLA1,
        models.PeopleNet.GPU,
        models.DashCamNet.DLA0,
        models.DashCamNet.DLA1,
        models.DashCamNet.GPU
        ]
    # ...
)
Owner
NVIDIA AI IOT
NVIDIA AI IOT
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution w

VECTR at UCLA 369 Dec 30, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Official repository of DeMFI (arXiv.)

DeMFI This is the official repository of DeMFI (Deep Joint Deblurring and Multi-Frame Interpolation). [ArXiv_ver.] Coming Soon. Reference Jihyong Oh a

Jihyong Oh 56 Dec 14, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022