Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Related tags

Deep LearningRT-VIBE
Overview

Real-time VIBE

Inference VIBE frame-by-frame.

Overview

This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE].

Usage:

import cv2
from vibe.rt.rt_vibe import RtVibe

rt_vibe = RtVibe()
cap = cv2.VideoCapture('sample_video.mp4')
while cap.isOpened():
    ret, frame = cap.read()
    rt_vibe(frame)  # This will open a cv2 window

SMPL Render takes most of the time, which can be closed with vibe_live.render = False

Getting Started

Installation:

# conda must be installed first
wget https://github.com/zc402/RT-VIBE/releases/download/v1.0.0/RT-VIBE.tar.gz
tar zxf RT-VIBE.tar.gz
cd RT-VIBE
# This will create a new conda env called vibe_env
source scripts/install_conda.sh
pip install .  # Install rt-vibe

Run on sample video:

python rt_demo.py  # (This runs sample_video.mp4)
# or
python rt_demo.py --vid_file=multiperson.mp4

Run on camera:

python rt_demo.py --camera

Try with google colab

This notebook provides video and camera inference example.

(there are some dependency errors during pip install, which is safe to ignore. Remember to restart environment after installing pytorch.)

https://colab.research.google.com/drive/1VKXGTfwIYT-ltbbEjhCpEczGpksb8I7o?usp=sharing

Features

  • Make VIBE an installable package
  • Fix GRU hidden states lost between batches in demo.py
  • Add realtime interface which processes the video stream frame-by-frame
  • Decrease GPU memory usage

Explain

  1. Pip installable.

  • This repo renames "lib" to "vibe" ("lib" is not a feasible package name), corrects corresponding imports, adds __init__.py files. It can be installed with:
pip install git+https://github.com/zc402/RT-VIBE
  1. GRU hidden state lost:

  • The original vibe.py reset GRU memory for each batch, which causes discontinuous predictions.

  • The GRU hidden state is reset at:

# .../models/vibe.py
# class TemporalEncoder
# def forward()
y, _ = self.gru(x)

# The "_" is the final hidden state and should be preserved
# https://pytorch.org/docs/stable/generated/torch.nn.GRU.html
  • This repo preserve GRU hidden state within the lifecycle of the model, instead of one batch.
# Fix:

# __init__()
self.gru_final_hidden = None

# forward()
y, self.gru_final_hidden = self.gru(x, self.gru_final_hidden)
  1. Real-time interface

  • This feature makes VIBE run on webcam.

  • Processing steps of the original VIBE :

    • use ffmpeg to split video into images, save to /tmp
    • process the human tracking for whole video, keep results in memory
    • predict smpl params with VIBE for whole video, 1 person at a time.
    • (optional) render and show (frame by frame)
    • save rendered result
  • Processing steps of realtime interface

    • create VIBE model.
    • read a frame with cv2
    • run tracking for 1 frame
    • predict smpl params for each person, keep the hidden states separately.
    • (optional) render and show
  • Changes

    • Multi-person-tracker is modified to receive image instead of image folder.
    • a dataset wrapper is added to convert single image into a pytorch dataset.
    • a rt_demo.py is added to demonstrate the usage.
    • ImageFolder dataset is modified
    • ImgInference dataset is modified
    • requirements are modified to freeze current tracker version. (Class in my repo inherits the tracker and changes its behavior)
  1. Decrease inference memory usage

  • The default batch_size in demo.py needs ~10GB GPU memory
  • Original demo.py needs large vibe_batch_size to keep GRU hidden states
  • Since the GRU hidden state was fixed now, lowering the memory usage won't harm the accuracy anymore.
  • With the default setting in this repo, inference occupies ~1.3GB memory, which makes it runable on low-end GPU.
  • This will slow down the inference a little. The current setting (batchsize==1) reflect actual realtime processing speed.
# Large batch causes OOM in low-end memory card
tracker_batch_size = 12 -> 1
vibe_batch_size = 450 -> 1

Other fixes

Remove seqlen. The seqlen in demo.py has no usage (GRU sequence length is decided in runtime and equals to batch_size). With the fix in this repo, it is safe to set batch_size to 1.

You might also like...
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

Repository for the paper
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

pytorch implementation of openpose including Hand and Body Pose Estimation.
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

A large-scale video dataset for the training and evaluation of 3D human pose estimation models
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

A large-scale video dataset for the training and evaluation of 3D human pose estimation models
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30 sports-related actions each, for a total of 510 action clips.

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Code for
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Releases(v1.0.0)
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Matthew Colbrook 1 Apr 08, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022