Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

Overview

PyMAF

This repository contains the code for the following paper:

3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop
Hongwen Zhang*, Yating Tian*, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, Zhenan Sun

* Equal contribution

[Project Page] [ArXiv] [Paper]

PyMAF

Requirements

  • Python 3.6.10

packages

necessary files

mesh_downsampling.npz & DensePose UV data

  • Run the following script to fetch mesh_downsampling.npz & DensePose UV data from other repositories.
bash fetch_data.sh

SMPL model files

Fetch preprocessed data from SPIN.

Download the pre-trained model and put it into the ./data/pretrained_model directory.

After collecting the above necessary files, the directory structure of ./data is expected as follows.

./data
├── dataset_extras
│   └── .npz files
├── J_regressor_extra.npy
├── J_regressor_h36m.npy
├── mesh_downsampling.npz
├── pretrained_model
│   └── PyMAF_model_checkpoint.pt
├── smpl
│   ├── SMPL_FEMALE.pkl
│   ├── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smpl_mean_params.npz
├── static_fits
│   └── .npy files
└── UV_data
    ├── UV_Processed.mat
    └── UV_symmetry_transforms.mat

Demo

[UPDATE] You can first give it a try on Google Colab using the notebook we have prepared, which is no need to prepare the environment yourself: Open In Colab

Run the demo code.

python3 demo.py --checkpoint=data/pretrained_model/PyMAF_model_checkpoint.pt --vid_file ./flashmob.mp4


Frame by frame reconstruction. Video clipped from here.

Evaluation

Human3.6M / 3DPW

Run the evaluation code. Using --dataset to specify the evaluation dataset.

# Example usage:

# Human3.6M Protocol 2
python3 eval.py --checkpoint=data/pretrained_model/PyMAF_model_checkpoint.pt --dataset=h36m-p2 --log_freq=20

# 3DPW
python3 eval.py --checkpoint=data/pretrained_model/PyMAF_model_checkpoint.pt --dataset=3dpw --log_freq=20

COCO Keypoint Localization

  1. Download the preprocessed data coco_2014_val.npz. Put it into the ./data/dataset_extras directory.

  2. Run the COCO evaluation code.

python3 eval_coco.py --checkpoint=data/pretrained_model/PyMAF_model_checkpoint.pt

Training

To perform training, we need to collect preprocessed files of training datasets at first.

The preprocessed labels have the same format as SPIN and can be retrieved from here. Please refer to SPIN for more details about data preprocessing.

PyMAF is trained on Human3.6M at the first stage and then trained on the mixture of both 2D and 3D datasets at the second stage. Example usage:

# training on Human3.6M
python3 train.py --regressor pymaf_net --single_dataset --misc TRAIN.BATCH_SIZE 64
# training on mixed datasets
python3 train.py --regressor pymaf_net --pretrained_checkpoint path/to/checkpoint_file.pt --misc TRAIN.BATCH_SIZE 64

Running the above commands will use Human3.6M or mixed datasets for training, respectively. We can monitor the training process by setting up a TensorBoard at the directory ./logs.

Citation

If this work is helpful in your research, please cite the following paper.

@article{pymaf2021,
  title={3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop},
  author={Zhang, Hongwen and Tian, Yating and Zhou, Xinchi and Ouyang, Wanli and Liu, Yebin and Wang, Limin and Sun, Zhenan},
  journal={arXiv preprint arXiv:2103.16507},
  year={2021}
}

Acknowledgments

The code is developed upon the following projects. Many thanks to their contributions.

Owner
Hongwen Zhang
Hongwen Zhang
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023