Implementation of parameterized soft-exponential activation function.

Overview

Soft-Exponential-Activation-Function:

Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are the same for all neurons initially starting with -0.01. This activation function revolves around the idea of a "soft" exponential function. The soft-exponential function is a function that is very similar to the exponential function, but it is not as steep at the beginning and it is more gradual at the end. The soft-exponential function is a good choice for neural networks that have a lot of connections and a lot of neurons.

This activation function is under the idea that the function is logarithmic, linear, exponential and smooth.

The equation for the soft-exponential function is:

$$ f(\alpha,x)= \left{ \begin{array}{ll} -\frac{ln(1-\alpha(x + \alpha))}{\alpha} & \alpha < 0\ x & \alpha = 0 \ \frac{e^{\alpha x} - 1}{\alpha} + \alpha & \alpha > 0 \ \end{array} \right. $$

Problems faced:

1. Misinformation about the function

From a paper by A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks, here in Figure 2, the soft-exponential function is shown as a logarithmic function. This is not the case.

Figure Given

The real figure should be shown here:

Figure Truth

Here we can see in some cases the soft-exponential function is undefined for some values of $\alpha$,$x$ and $\alpha$,$x$ is not a constant.

2. Negative values inside logarithm

Here comes the tricky part. The soft-exponential function is defined for all values of $\alpha$ and $x$. However, the logarithm is not defined for negative values.

In the issues under Keras, one of the person has suggested to use the following function $sinh^{-1}()$ instead of the $\ln()$.

3. Initialization of alpha

Starting with an initial value of -0.01, the soft-exponential function was steep at the beginning and it is more gradual at the end. This was a good idea.

Performance:

First picture showing the accuracy of the soft-exponential function.

Figure 1

This shows the loss of the soft-exponential function.

Figure 2

Model Structure:

_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 28, 28)]          0         
                                                                 
 flatten (Flatten)           (None, 784)               0         
                                                                 
 dense_layer (Dense_layer)   (None, 128)               100480    
                                                                 
 parametric_soft_exp (Parame  (None, 128)              128       
 tricSoftExp)                                                    
                                                                 
 dense_layer_1 (Dense_layer)  (None, 128)              16512     
                                                                 
 parametric_soft_exp_1 (Para  (None, 128)              128       
 metricSoftExp)                                                  
                                                                 
 dense (Dense)               (None, 10)                1290      
                                                                 
=================================================================
Total params: 118,538
Trainable params: 118,538
Non-trainable params: 0

Acknowledgements:

Owner
Shuvrajeet Das
Tech Guy with a dedicated interest in learning new kinds of stuff. Sophomore @ 2021.
Shuvrajeet Das
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022