Geometric Algebra package for JAX

Overview

JAXGA - JAX Geometric Algebra

Build status PyPI

GitHub | Docs

JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing only the non-zero basis blade coefficients. It makes use of JAX's just-in-time (JIT) compilation by first precomputing blade indices and signs and then JITting the function doing the actual calculations.

Installation

Install using pip: pip install jaxga

Requirements:

Usage

Unlike most other Geometric Algebra packages, it is not necessary to pre-specify an algebra. JAXGA can either be used with the MultiVector class or by using lower-level functions which is useful for example when using JAX's jit or automatic differentaition.

The MultiVector class provides operator overloading and is constructed with an array of values and their corresponding basis blades. The basis blades are encoded as tuples, for example the multivector 2 e_1 + 4 e_23 would have the values [2, 4] and the basis blade tuple ((1,), (2, 3)).

MultiVector example

import jax.numpy as jnp
from jaxga.mv import MultiVector

a = MultiVector(
    values=2 * jnp.ones([1], dtype=jnp.float32),
    indices=((1,),)
)
# Alternative: 2 * MultiVector.e(1)

b = MultiVector(
    values=4 * jnp.ones([2], dtype=jnp.float32),
    indices=((2, 3),)
)
# Alternative: 4 * MultiVector.e(2, 3)

c = a * b
print(c)

Output: Multivector(8.0 e_{1, 2, 3})

The lower-level functions also deal with values and blades. Functions are provided that take the blades and return a function that does the actual calculation. The returned function is JITted and can also be automatically differentiated with JAX. Furthermore, some operations like the geometric product take a signature function that takes a basis vector index and returns their square.

Lower-level function example

import jax.numpy as jnp
from jaxga.signatures import positive_signature
from jaxga.ops.multiply import get_mv_multiply

a_values = 2 * jnp.ones([1], dtype=jnp.float32)
a_indices = ((1,),)

b_values = 4 * jnp.ones([1], dtype=jnp.float32)
b_indices = ((2, 3),)

mv_multiply, c_indices = get_mv_multiply(a_indices, b_indices, positive_signature)
c_values = mv_multiply(a_values, b_values)
print("C indices:", c_indices, "C values:", c_values)

Output: C indices: ((1, 2, 3),) C values: [8.]

Some notes

  • Both the MultiVector and lower-level function approaches support batches: the axes after the first one (which indexes the basis blades) are treated as batch indices.
  • The MultiVector class can also take a signature in its constructor (default is square to 1 for all basis vectors). Doing operations with MultiVectors with different signatures is undefined.
  • The jaxga.signatures submodule contains a few predefined signature functions.
  • get_mv_multiply and similar functions cache their result by their inputs.
  • The flaxmodules submodule provides flax (a popular neural network library for jax) modules with Geometric Algebra operations.
  • Because we don't deal with a specific algebra, the dual needs an input that specifies the dimensionality of the space in which we want to find the dual element.

Benchmarks

N-d vector * N-d vector, batch size 100, N=range(1, 10), CPU

JaxGA stores only the non-zero basis blade coefficients. TFGA and Clifford on the other hand store all GA elements as full multivectors including all zeros. As a result, JaxGA does better than these for high dimensional algebras.

Below is a benchmark of the geometric product of two vectors with increasing dimensionality from 1 to 9. 100 vectors are multiplied at a time.

JAXGA (CPU) tfga (CPU) clifford
benchmark-results benchmark-results benchmark-results

N-d vector * N-d vector, batch size 100, N=range(1, 50, 5), CPU

Below is a benchmark for higher dimensions that TFGA and Clifford could not handle. Note that the X axis isn't sorted naturally.

benchmark-results

Owner
Robin Kahlow
Software / Machine Learning Engineer
Robin Kahlow
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022