Geometric Algebra package for JAX

Overview

JAXGA - JAX Geometric Algebra

Build status PyPI

GitHub | Docs

JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing only the non-zero basis blade coefficients. It makes use of JAX's just-in-time (JIT) compilation by first precomputing blade indices and signs and then JITting the function doing the actual calculations.

Installation

Install using pip: pip install jaxga

Requirements:

Usage

Unlike most other Geometric Algebra packages, it is not necessary to pre-specify an algebra. JAXGA can either be used with the MultiVector class or by using lower-level functions which is useful for example when using JAX's jit or automatic differentaition.

The MultiVector class provides operator overloading and is constructed with an array of values and their corresponding basis blades. The basis blades are encoded as tuples, for example the multivector 2 e_1 + 4 e_23 would have the values [2, 4] and the basis blade tuple ((1,), (2, 3)).

MultiVector example

import jax.numpy as jnp
from jaxga.mv import MultiVector

a = MultiVector(
    values=2 * jnp.ones([1], dtype=jnp.float32),
    indices=((1,),)
)
# Alternative: 2 * MultiVector.e(1)

b = MultiVector(
    values=4 * jnp.ones([2], dtype=jnp.float32),
    indices=((2, 3),)
)
# Alternative: 4 * MultiVector.e(2, 3)

c = a * b
print(c)

Output: Multivector(8.0 e_{1, 2, 3})

The lower-level functions also deal with values and blades. Functions are provided that take the blades and return a function that does the actual calculation. The returned function is JITted and can also be automatically differentiated with JAX. Furthermore, some operations like the geometric product take a signature function that takes a basis vector index and returns their square.

Lower-level function example

import jax.numpy as jnp
from jaxga.signatures import positive_signature
from jaxga.ops.multiply import get_mv_multiply

a_values = 2 * jnp.ones([1], dtype=jnp.float32)
a_indices = ((1,),)

b_values = 4 * jnp.ones([1], dtype=jnp.float32)
b_indices = ((2, 3),)

mv_multiply, c_indices = get_mv_multiply(a_indices, b_indices, positive_signature)
c_values = mv_multiply(a_values, b_values)
print("C indices:", c_indices, "C values:", c_values)

Output: C indices: ((1, 2, 3),) C values: [8.]

Some notes

  • Both the MultiVector and lower-level function approaches support batches: the axes after the first one (which indexes the basis blades) are treated as batch indices.
  • The MultiVector class can also take a signature in its constructor (default is square to 1 for all basis vectors). Doing operations with MultiVectors with different signatures is undefined.
  • The jaxga.signatures submodule contains a few predefined signature functions.
  • get_mv_multiply and similar functions cache their result by their inputs.
  • The flaxmodules submodule provides flax (a popular neural network library for jax) modules with Geometric Algebra operations.
  • Because we don't deal with a specific algebra, the dual needs an input that specifies the dimensionality of the space in which we want to find the dual element.

Benchmarks

N-d vector * N-d vector, batch size 100, N=range(1, 10), CPU

JaxGA stores only the non-zero basis blade coefficients. TFGA and Clifford on the other hand store all GA elements as full multivectors including all zeros. As a result, JaxGA does better than these for high dimensional algebras.

Below is a benchmark of the geometric product of two vectors with increasing dimensionality from 1 to 9. 100 vectors are multiplied at a time.

JAXGA (CPU) tfga (CPU) clifford
benchmark-results benchmark-results benchmark-results

N-d vector * N-d vector, batch size 100, N=range(1, 50, 5), CPU

Below is a benchmark for higher dimensions that TFGA and Clifford could not handle. Note that the X axis isn't sorted naturally.

benchmark-results

Owner
Robin Kahlow
Software / Machine Learning Engineer
Robin Kahlow
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022