Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Overview

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

This repository is being continuously updated, please stay tuned!

Any code contribution is welcome! I am also looking for high-quality academic cooperation. If you are interested or have any problems, please contact me at [email protected].

We propose to enhance the practical applicability of online 3D-BPP via learning on a hierarchical packing configuration tree which makes the DRL model easy to deal with practical constraints and well-performing even with continuous solution space.

PCT

Paper

For more details, please see our paper Learning Efficient Online 3D Bin Packing on Packing Configuration Trees which has been accepted at ICLR 2022. If this code is useful for your work, please cite our paper:

@inproceedings{
zhao2022learning,
title={Learning Efficient Online 3D Bin Packing on Packing Configuration Trees},
author={Hang Zhao and Yang Yu and Kai Xu},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=bfuGjlCwAq}
}

Dependencies

  • Python>=3.7
  • NumPy
  • PyTorch>=1.7
  • gym

Quick start

For training online 3D-BPP on setting 2 (mentioned in our paper) with our PCT method and the default arguments:

python main.py 

The training data is generated on the fly.

Usage

Data

Describe your 3D container size and 3D item size in 'givenData.py'

For discrete settings:
container_size: A vector of length 3 describing the size of the container in the x, y, z dimension.
item_size_set:  A list records the size of each item. The size of each item is also described by a vector of length 3.

Training

For training online 3D BPP instances on setting 1 (80 internal nodes and 50 leaf nodes) nodes:

python main.py --setting 1 --internal-node-holder 80 --leaf_node_holder 50

Warm start

You can initialize a run using a pretrained model:

python main.py --load-model --model-path path/to/your model

Evaluation

To evaluate a model, you can add the --evaluate flag to evaluation.py:

python evaluation.py --evaluate --load-model --model-path path/to/your/model --load-dataset --dataset-path path/to/your/dataset

Help

python main.py -h

License

This source code is released only for academic use. Please do not use it for commercial purpose without authorization of the author.

TODO (This code will be fully published by March 2022)

1. Add heuristic baseline algorithm.
2. Add online 3D BPP environment under continuous domain. 
3. Add more user documentation and notes.
4. Add dataset and pretrained model.
5. Add other leaf node expansion schemes.
6. Feedback of various bugs is welcome.
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022