Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

Related tags

Deep LearningDeepCDR
Overview

DeepCDR

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

This work has been accepted to ECCB2020 and was also published in the journal Bioinformatics.

model

DeepCDR is a hybrid graph convolutional network for cancer drug response prediction. It takes both multi-omics data of cancer cell lines and drug structure as inputs and predicts the drug sensitivity (binary or contineous IC50 value).

Requirements

  • Keras==2.1.4
  • TensorFlow==1.13.1
  • hickle >= 2.1.0

Installation

DeepCDR can be downloaded by

git clone https://github.com/kimmo1019/DeepCDR

Installation has been tested in a Linux/MacOS platform.

Instructions

We provide detailed step-by-step instructions for running DeepCDR model including data preprocessing, model training, and model test.

Model implementation

Step 1: Data Preparing

Three types of raw data are required to generate genomic mutation matrix, gene expression matrix and DNA methylation matrix from CCLE database.

CCLE_mutations.csv - Genomic mutation profile from CCLE database

CCLE_expression.csv - Gene expression profile from CCLE database

CCLE_RRBS_TSS_1kb_20180614.txt - DNA methylation profile from CCLE database

The three types of raw data genomic mutation file, gene expression file and DNA methylation file can be downloaded from CCLE database or from our provided Cloud Server.

After data preprocessed, the three following preprocessed files will be in located in data folder.

genomic_mutation_34673_demap_features.csv -- genomic mutation matrix where each column denotes mutation locus and each row denotes a cell line

genomic_expression_561celllines_697genes_demap_features.csv -- gene expression matrix where each column denotes a coding gene and each row denotes a cell line

genomic_methylation_561celllines_808genes_demap_features.csv -- DNA methylation matrix where each column denotes a methylation locus and each row denotes a cell line

We recommend to start from the preprocessed data. Please note that each preprocessed file is in csv format, of which the column and row name are provided to speficy mutation location, gene name, methylation location and corresponding Cell line.

Step 2: Drug feature representation

Each drug in our study will be represented as a graph containing nodes and edges. From the GDSC database, we collected 223 drugs that have unique Pubchem ids. Note that a drug under different screening condition (different GDSC drug id) may share the same Pubchem id. Here, we used deepchem library for extracting node features and gragh of a drug. The node feature (75 dimension) corresponds to a stom in within a drug, which includes atom type, degree and hybridization, etc.

We recorded three types of features in a list as following

drug_feat = [node_feature, adj_list, degree_list]
node_feature - features of all atoms within a drug with size (nb_atom, 75)
adj_list - adjacent list of all atoms within a drug. It denotes the all the neighboring atoms indexs
degree_list - degree list of all atoms within a drug. It denotes the number of neighboring atoms 

The above feature list will be further compressed as pubchem_id.hkl using hickle library.

Please note that we provided the extracted features of 223 drugs from GDSC database, just unzip the drug_graph_feat.zip file in data/GDSC folder

Step 3: DeepCDR model training and testing

Here, we provide both DeepCDR regression and classification model here.

DeepCDR regression model

python run_DeepCDR.py -gpu_id [gpu_id] -use_mut [use_mut] -use_gexp [use_gexp] -use_methy [use_methy] 
[gpu_id] - set GPU card id (default:0)
[use_mut] - whether use genomic mutation data (default: True)
[use_gexp] - whether use gene expression data (default: True)
[use_methy] - whether use DNA methylation data (default: True)

One can run python run_DeepCDR.py -gpu_id 0 -use_mut True -use_gexp True -use_methy True to implement the DeepCDR regression model.

The trained model will be saved in data/checkpoint folder. The overall Pearson's correlation will be calculated.

DeepCDR classification model

python run_DeepCDR_classify.py -gpu_id [gpu_id] -use_mut [use_mut] -use_gexp [use_gexp] -use_methy [use_methy] 
[gpu_id] - set GPU card id (default:0)
[use_mut] - whether use genomic mutation data (default: True)
[use_gexp] - whether use gene expression data (default: True)
[use_methy] - whether use DNA methylation data (default: True)

One can run python run_DeepCDR_classify.py -gpu_id 0 -use_mut True -use_gexp True -use_methy True to implement the DeepCDR lassification model.

The trained model will be saved in data/checkpoint folder. The overall AUC and auPRn will be calculated.

External patient data

We also provided the external patient data downloaded from Firehose Broad GDAC. The patient data were preprocessed the same way as cell line data. The preprocessed data can be downloaded from our Server.

The preprocessed data contain three important files:

mut.csv - Genomic mutation profile of patients

expr.csv - Gene expression profile of patients

methy.csv - DNA methylation profile of patients

Note that the preprocessed patient data (csv format) have exact the same columns names as the three cell line data (genomic_mutation_34673_demap_features.csv, genomic_expression_561celllines_697genes_demap_features.csv, genomic_methylation_561celllines_808genes_demap_features.csv). The only difference is that the row name of patient data were replaced with patient unique barcode instead of cell line name.

Such format-consistent data is easy for external evaluation by repacing the cell line data with patient data.

Predicted missing data

As GDSC database only measured IC50 of part cell line and drug paires. We applied DeepCDR to predicted the missing IC50 values in GDSC database. The predicted results can be find at data/Missing_data_pre/records_pre_all.txt. Each record represents a predicted drug and cell line pair. The records were sorted by the predicted median IC50 values of a drug (see Fig.2E).

Contact

If you have any question regard our code or data, please do not hesitate to open a issue or directly contact me ([email protected])

Cite

If you used our work in your research, please consider citing our paper

Qiao Liu, Zhiqiang Hu, Rui Jiang, Mu Zhou, DeepCDR: a hybrid graph convolutional network for predicting cancer drug response, Bioinformatics, 2020, 36(2):i911-i918.

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Owner
Qiao Liu
Qiao Liu
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Intermdiate layer matters - SSL The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper. Downl

Aakash Kaku 35 Sep 19, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022