Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Overview

Detecting Invisible People

[ICCV 2021 Paper] [Website]

Tarasha Khurana, Achal Dave, Deva Ramanan

Introduction

This repository contains code for Detecting Invisible People. We extend the original DeepSORT algorithm to localize people even while they are completely occluded in a video. See the arXiv preprint for more information.

Dependencies

Create a conda environment with the given environment.yml file.

conda env create -f environment.yml

Preprocessing

The code expects the directory structure of your dataset in the MOT Challenge data format, which is approximately like the following:

MOT17/
-- train/
---- seq_01/
------ img1/
------ img1Depth/
------ gt/
------ det/
...
-- test/
---- seq_02/
------ img1/
------ img1Depth/
------ det/

The folder img1Depth stores the normalized disparity in .npy format. See Note. Originally, the paper runs the method on depth given by the MegaDepth depth estimator.

Given the above folder structure, generate the appearance features for your detections as described in the DeepSORT repository.

Running the method

The script run_forecast_filtering.sh will run the method with hyperparameters used in the paper. It will produce output .txt files in the MOT Challenge submission format. The bashscript has support for computing the metrics, but this has not been verified. Run the bashscript like the following:

bash run_forecast_filtering.sh experimentName

Note that in order to speed up code release, the dataset, preprocessed detections and output file paths are hardcoded in the files and will have to be manually changed.

Citing Detecting Invisible People

If you find this code useful in your research, please consider citing the following paper:

@inproceedings{khurana2021detecting,
  title={{Detecting Invisible People}},
  author={Khurana, Tarasha and Dave, Achal and Ramanan, Deva},
  booktitle={{IEEE/CVF International Conference on Computer Vision (ICCV)}},
  year={2021}
}

Warning

This is only the starter code that has not been cleaned for release. It currently only has verified support for running the method described in Detecting Invisible People, with the output tracks written in the MOT Challenge submission format. Although Top-k metric's code has been provided, this codebase does not guarantee support for the metric yet.

The hope is that you are able to benchmark this method for your CVPR 2022 submission and compute your own metrics on the method's output. If the method code does not work, please open an issue.

Note

Although it is easy to run any monocular depth estimator and store their output (usually given as disparity) in an .npy file, I have added a script in tools/demo_images.py which can save the .npy files for you. Note that this script should be run after setting up the MegaDepth codebase and copying this file to its root directory. I will likely also release my own depth maps for the MOT17 dataset over the Halloween weekend.

If you try to run the metrics, I have given my groundtruth JSON (as expected by pycocotools).

Owner
Tarasha Khurana
Tarasha Khurana
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Meta Research 663 Jan 06, 2023