GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

Overview

GradAttack

GradAttack CI

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies. The current version focuses on the gradient inversion attack in the image classification task, which recovers private images from public gradients.

Motivation

Recent research shows that sending gradients instead of data in Federated Learning can leak private information (see this growing list of attack paper). These attacks demonstrate that an adversary eavesdropping on a client’s communications (i.e. observing the global modelweights and client update) can accurately reconstruct a client’s private data using a class of techniques known as “gradient inversion attacks", which raise serious concerns about such privacy leakage.

To counter these attacks, researchers have proposed defense mechanisms (see this growing list of defense paper). We are developing this framework to evaluate different defense mechanisms against state-of-the-art attacks.

Why GradAttack?

There are lots of reasons to use GradAttack:

  • 😈   Evaluate the privacy risk of your Federated Learning pipeline by running on it various attacks supported by GradAttack

  • 💊   Enhance the privacy of your Federated Learning pipeline by applying defenses supported by GradAttack in a plug-and-play fashion

  • 🔧   Research and develop new gradient attacks and defenses by reusing the simple and extensible APIs in GradAttack

Slack Channel

For help and realtime updates related to GradAttack, please join the GradAttack Slack!

Installation

You may install GradAttack directly from PyPi using pip:

pip install gradattack

You can also install directly from the source for the latest features:

git clone https://github.com/Princeton-SysML/GradAttack
cd GradAttack
pip install -e .

Getting started

To evaluate your model's privacy leakage against the gradient inversion attack, all you need to do is to:

  1. Define your deep learning pipeline
datamodule = CIFAR10DataModule()
model = create_lightning_module(
        'ResNet18',
        training_loss_metric=loss,
        **hparams,
    )
trainer = pl.Trainer(
        gpus=devices,
        check_val_every_n_epoch=1,
        logger=logger,
        max_epochs=args.n_epoch,
        callbacks=[early_stop_callback],
    )
pipeline = TrainingPipeline(model, datamodule, trainer)
  1. (Optional) Apply defenses to the pipeline
defense_pack = DefensePack(args, logger)
defense_pack.apply_defense(pipeline)
  1. Run training with the pipeline (see detailed example scripts and bashes in examples)
pipeline.run()
pipeline.test()

You may use the tensorboard logs to track your training and to compare results of different runs:

tensorboard --logdir PATH_TO_TRAIN_LOGS

Example of training logs

  1. Run attack on the pipeline (see detailed example scripts and bashes in examples)
# Fetch a victim batch and define an attack instance
example_batch = pipeline.get_datamodule_batch()
batch_gradients, step_results = pipeline.model.get_batch_gradients(
        example_batch, 0)
batch_inputs_transform, batch_targets_transform = step_results[
    "transformed_batch"]
attack_instance = GradientReconstructor(
    pipeline,
    ground_truth_inputs=batch_inputs_transform,
    ground_truth_gradients=batch_gradients,
    ground_truth_labels=batch_targets_transform,
)

# Define the attack instance and launch the attack
attack_trainer = pl.Trainer(
    max_epochs=10000,
)
attack_trainer.fit(attack_instance,)

You may use the tensorboard logs to track your attack and to compare results of different runs:

tensorboard --logdir PATH_TO_ATTACK_LOGS

Example of training logs

  1. Evalute the attack results (see examples)
python examples/calc_metric.py --dir PATH_TO_ATTACK_RESULTS

Contributing to GradAttack

GradAttack is currently in an "alpha" stage in which we are working to improve its capabilities and design.

Contributions are welcome! See the contributing guide for detailed instructions on how to contribute to our project.

Citing GradAttack

If you want to use GradAttack for your research (much appreciated!), you can cite it as follows:

@inproceedings{huang2021evaluating,
  title={Evaluating Gradient Inversion Attacks and Defenses in Federated Learning},
  author={Huang, Yangsibo and Gupta, Samyak and Song, Zhao and Li, Kai and Arora, Sanjeev},
  booktitle={NeurIPS},
  year={2021}
}

Acknowledgement

This project is supported in part by Ma Huateng Foundation, Schmidt Foundation, NSF, Simons Foundation, ONR and DARPA/SRC. Yangsibo Huang and Samyak Gupta are supported in part by the Princeton Graduate Fellowship. We would like to thank Quanzheng Li, Xiaoxiao Li, Hongxu Yin and Aoxiao Zhong for helpful discussions, and members of Kai Li’s and Sanjeev Arora’s research groups for comments on early versions of this library.

The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022