GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

Overview

GradAttack

GradAttack CI

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies. The current version focuses on the gradient inversion attack in the image classification task, which recovers private images from public gradients.

Motivation

Recent research shows that sending gradients instead of data in Federated Learning can leak private information (see this growing list of attack paper). These attacks demonstrate that an adversary eavesdropping on a client’s communications (i.e. observing the global modelweights and client update) can accurately reconstruct a client’s private data using a class of techniques known as “gradient inversion attacks", which raise serious concerns about such privacy leakage.

To counter these attacks, researchers have proposed defense mechanisms (see this growing list of defense paper). We are developing this framework to evaluate different defense mechanisms against state-of-the-art attacks.

Why GradAttack?

There are lots of reasons to use GradAttack:

  • 😈   Evaluate the privacy risk of your Federated Learning pipeline by running on it various attacks supported by GradAttack

  • 💊   Enhance the privacy of your Federated Learning pipeline by applying defenses supported by GradAttack in a plug-and-play fashion

  • 🔧   Research and develop new gradient attacks and defenses by reusing the simple and extensible APIs in GradAttack

Slack Channel

For help and realtime updates related to GradAttack, please join the GradAttack Slack!

Installation

You may install GradAttack directly from PyPi using pip:

pip install gradattack

You can also install directly from the source for the latest features:

git clone https://github.com/Princeton-SysML/GradAttack
cd GradAttack
pip install -e .

Getting started

To evaluate your model's privacy leakage against the gradient inversion attack, all you need to do is to:

  1. Define your deep learning pipeline
datamodule = CIFAR10DataModule()
model = create_lightning_module(
        'ResNet18',
        training_loss_metric=loss,
        **hparams,
    )
trainer = pl.Trainer(
        gpus=devices,
        check_val_every_n_epoch=1,
        logger=logger,
        max_epochs=args.n_epoch,
        callbacks=[early_stop_callback],
    )
pipeline = TrainingPipeline(model, datamodule, trainer)
  1. (Optional) Apply defenses to the pipeline
defense_pack = DefensePack(args, logger)
defense_pack.apply_defense(pipeline)
  1. Run training with the pipeline (see detailed example scripts and bashes in examples)
pipeline.run()
pipeline.test()

You may use the tensorboard logs to track your training and to compare results of different runs:

tensorboard --logdir PATH_TO_TRAIN_LOGS

Example of training logs

  1. Run attack on the pipeline (see detailed example scripts and bashes in examples)
# Fetch a victim batch and define an attack instance
example_batch = pipeline.get_datamodule_batch()
batch_gradients, step_results = pipeline.model.get_batch_gradients(
        example_batch, 0)
batch_inputs_transform, batch_targets_transform = step_results[
    "transformed_batch"]
attack_instance = GradientReconstructor(
    pipeline,
    ground_truth_inputs=batch_inputs_transform,
    ground_truth_gradients=batch_gradients,
    ground_truth_labels=batch_targets_transform,
)

# Define the attack instance and launch the attack
attack_trainer = pl.Trainer(
    max_epochs=10000,
)
attack_trainer.fit(attack_instance,)

You may use the tensorboard logs to track your attack and to compare results of different runs:

tensorboard --logdir PATH_TO_ATTACK_LOGS

Example of training logs

  1. Evalute the attack results (see examples)
python examples/calc_metric.py --dir PATH_TO_ATTACK_RESULTS

Contributing to GradAttack

GradAttack is currently in an "alpha" stage in which we are working to improve its capabilities and design.

Contributions are welcome! See the contributing guide for detailed instructions on how to contribute to our project.

Citing GradAttack

If you want to use GradAttack for your research (much appreciated!), you can cite it as follows:

@inproceedings{huang2021evaluating,
  title={Evaluating Gradient Inversion Attacks and Defenses in Federated Learning},
  author={Huang, Yangsibo and Gupta, Samyak and Song, Zhao and Li, Kai and Arora, Sanjeev},
  booktitle={NeurIPS},
  year={2021}
}

Acknowledgement

This project is supported in part by Ma Huateng Foundation, Schmidt Foundation, NSF, Simons Foundation, ONR and DARPA/SRC. Yangsibo Huang and Samyak Gupta are supported in part by the Princeton Graduate Fellowship. We would like to thank Quanzheng Li, Xiaoxiao Li, Hongxu Yin and Aoxiao Zhong for helpful discussions, and members of Kai Li’s and Sanjeev Arora’s research groups for comments on early versions of this library.

Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Facebook Research 605 Jan 02, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021