CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

Overview

CALVIN

CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete, Wolfram Burgard

We present CALVIN (Composing Actions from Language and Vision), an open-source simulated benchmark to learn long-horizon language-conditioned tasks. Our aim is to make it possible to develop agents that can solve many robotic manipulation tasks over a long horizon, from onboard sensors, and specified only via human language. CALVIN tasks are more complex in terms of sequence length, action space, and language than existing vision-and-language task datasets and supports flexible specification of sensor suites.

💻 Quick Start

To begin, clone this repository locally

git clone --recurse-submodules https://github.com/mees/calvin.git
$ export CALVIN_ROOT=$(pwd)/calvin

Install requirements:

$ cd $CALVIN_ROOT
$ virtualenv -p $(which python3) --system-site-packages calvin_env # or use conda
$ source calvin_env/bin/activate
$ sh install.sh

Download dataset (choose which split you want to download with the argument D, ABC or ABCD):

$ cd $CALVIN_ROOT/dataset
$ sh download_data.sh D | ABC | ABCD

🏋️‍♂️ Train Baseline Agent

Train baseline models:

$ cd $CALVIN_ROOT/calvin_models/calvin_agent
$ python training.py

You want to scale your training to a multi-gpu setup? Just specify the number of GPUs and DDP will automatically be used for training thanks to Pytorch Lightning. To train on all available GPUs:

$ python training.py trainer.gpus=-1

If you have access to a Slurm cluster, we also provide trainings scripts here.

You can use Hydra's flexible overriding system for changing hyperparameters. For example, to train a model with rgb images from both static camera and the gripper camera:

$ python training.py datamodule/observation_space=lang_rgb_static_gripper model/perceptual_encoder=gripper_cam

To train a model with RGB-D from both cameras:

$ python training.py datamodule/observation_space=lang_rgbd_both model/perceptual_encoder=RGBD_both

To train a model with rgb images from the static camera and visual tactile observations:

$ python training.py datamodule/observation_space=lang_rgb_static_tactile model/perceptual_encoder=static_RGB_tactile

To see all available hyperparameters:

$ python training.py --help

To resume a training, just override the hydra working directory :

$ python training.py hydra.run.dir=runs/my_dir

🖼️ Sensory Observations

CALVIN supports a range of sensors commonly utilized for visuomotor control:

  1. Static camera RGB images - with shape 200x200x3.
  2. Static camera Depth maps - with shape 200x200x1.
  3. Gripper camera RGB images - with shape 200x200x3.
  4. Gripper camera Depth maps - with shape 200x200x1.
  5. Tactile image - with shape 120x160x2x3.
  6. Proprioceptive state - EE position (3), EE orientation in euler angles (3), gripper width (1), joint positions (7), gripper action (1).

🕹️ Action Space

In CALVIN, the agent must perform closed-loop continuous control to follow unconstrained language instructions characterizing complex robot manipulation tasks, sending continuous actions to the robot at 30hz. In order to give researchers and practitioners the freedom to experiment with different action spaces, CALVIN supports the following actions spaces:

  1. Absolute cartesian pose - EE position (3), EE orientation in euler angles (3), gripper action (1).
  2. Relative cartesian displacement - EE position (3), EE orientation in euler angles (3), gripper action (1).
  3. Joint action - Joint positions (7), gripper action (1).

💪 Evaluation: The Calvin Challenge

Long-horizon Multi-task Language Control (LH-MTLC)

The aim of the CALVIN benchmark is to evaluate the learning of long-horizon language-conditioned continuous control policies. In this setting, a single agent must solve complex manipulation tasks by understanding a series of unconstrained language expressions in a row, e.g., “open the drawer. . . pick up the blue block. . . now push the block into the drawer. . . now open the sliding door”. We provide an evaluation protocol with evaluation modes of varying difficulty by choosing different combinations of sensor suites and amounts of training environments. To avoid a biased initial position, the robot is reset to a neutral position before every multi-step sequence.

To evaluate a trained calvin baseline agent, run the following command:

$ cd $CALVIN_ROOT/calvin_models/calvin_agent
$ python evaluation/evaluate_policy.py --dataset_path <PATH/TO/DATASET> --train_folder <PATH/TO/TRAINING/FOLDER>

Optional arguments:

  • --checkpoint <PATH/TO/CHECKPOINT>: by default, the evaluation loads the last checkpoint in the training log directory. You can instead specify the path to another checkpoint by adding this to the evaluation command.
  • --debug: print debug information and visualize environment.

If you want to evaluate your own model architecture on the CALVIN challenge, you can implement the CustomModel class in evaluate_policy.py as an interface to your agent. You need to implement the following methods:

  • __init__(): gets called once at the beginning of the evaluation.
  • reset(): gets called at the beginning of each evaluation sequence.
  • step(obs, goal): gets called every step and returns the predicted action.

Then evaluate the model by running:

$ python evaluation/evaluate_policy.py --dataset_path <PATH/TO/DATASET> --custom_model

You are also free to use your own language model instead of using the precomputed language embeddings provided by CALVIN. For this, implement CustomLangEmbeddings in evaluate_policy.py and add --custom_lang_embeddings to the evaluation command.

Multi-task Language Control (MTLC)

Alternatively, you can evaluate the policy on single tasks and without resetting the robot to a neutral position. Note that this evaluation is currently only available for our baseline agent.

$ python evaluation/evaluate_policy_singlestep.py --dataset_path <PATH/TO/DATASET> --train_folder <PATH/TO/TRAINING/FOLDER> [--checkpoint <PATH/TO/CHECKPOINT>] [--debug]

Pre-trained Model

Download the MCIL model checkpoint trained on the static camera rgb images on environment D.

$ wget http://calvin.cs.uni-freiburg.de/model_weights/D_D_static_rgb_baseline.zip
$ unzip D_D_static_rgb_baseline.zip

💬 Relabeling Raw Language Annotations

You want to try learning language conditioned policies in CALVIN with a new awesome language model?

We provide an example script to relabel the annotations with different language model provided in SBert, such as the larger MPNet (paraphrase-mpnet-base-v2) or its corresponding multilingual model (paraphrase-multilingual-mpnet-base-v2). The supported options are "mini", "mpnet" and "multi". If you want to try different SBert models, just change the model name here.

cd $CALVIN_ROOT/calvin_models/calvin_agent
python utils/relabel_with_new_lang_model.py +path=$CALVIN_ROOT/dataset/task_D_D/ +name_folder=new_lang_model_folder model.nlp_model=mpnet

If you additionally want to sample different language annotations for each sequence (from the same task annotations) in the training split run the same command with the parameter reannotate=true.

📈 SOTA Models

Open-source models that outperform the MCIL baselines from CALVIN:

Contact Oier to add your model here.

Reinforcement Learning with CALVIN

Are you interested in trying reinforcement learning agents for the different manipulation tasks in the CALVIN environment? We provide a google colab to showcase how to leverage the CALVIN task indicators to learn RL agents with a sparse reward.

Citation

If you find the dataset or code useful, please cite:

@article{calvin21,
author = {Oier Mees and Lukas Hermann and Erick Rosete-Beas and Wolfram Burgard},
title = {CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks},
journal={arXiv preprint arXiv:2112.03227},
year = 2021,
}

License

MIT License

Owner
Oier Mees
PhD Student at the University of Freiburg, Germany. Researcher in Machine Learning and Robotics.
Oier Mees
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
TianyuQi 10 Dec 11, 2022
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023