On-device speech-to-index engine powered by deep learning.

Overview

Octopus

GitHub

PyPI Maven Central Cocoapods

Made in Vancouver, Canada by Picovoice

Twitter URL YouTube Channel Views

Octopus is Picovoice's Speech-to-Index engine. It directly indexes speech without relying on a text representation. This acoustic-only approach boosts accuracy by removing out-of-vocabulary limitation and eliminating the problem of competing hypothesis (e.g. homophones)

Table of Contents

Demos

Python Demos

Install the demo package:

sudo pip3 install pvoctopusdemo

Run the following in the terminal:

octopus_demo  --access_key {AccessKey} --audio_paths ${AUDIO_PATHS}

Replace ${AccessKey} with your AccessKey obtained from Picovoice Console and ${AUDIO_PATHS} with a space-separated list of audio files. Octopus starts processing the audio files and asks you for search phrases and shows results interactively.

For more information about the Python demos go to demo/python.

C Demos

Build the demo:

cmake -S demo/c/ -B demo/c/build && cmake --build demo/c/build

Index a given audio file:

./demo/c/build/octopus_index_demo ${LIBRARY_PATH} ${ACCESS_KEY} ${AUDIO_PATH} ${INDEX_PATH}

Then search the index for a given phrase:

./demo/c/build/octopus_search_demo ${LIBRARY_PATH} ${MODEL_PATH} ${ACCESS_KEY} ${INDEX_PATH} ${SEARCH_PHRASE}

Replace ${LIBRARY_PATH} with path to appropriate library available under lib, ${ACCESS_KEY} with AccessKey obtained from Picovoice Console, ${AUDIO_PATH} with the path to a given audio file and format, ${INDEX_PATH} with the path to cached index file and ${SEARCH_PHRASE} to a search phrase.

For more information about C demos go to demo/c.

Android Demos

Using Android Studio, open demo/android/OctopusDemo as an Android project.

Replace "${YOUR_ACCESS_KEY_HERE}" inside MainActivity.java with your AccessKey obtained from Picovoice Console. Then run the demo.

For more information about Android demos go to demo/android.

iOS Demos

From the demo/ios/OctopusDemo, run the following to install the Octopus CocoaPod:

pod install

Replace "{YOUR_ACCESS_KEY_HERE}" inside ViewModel.swift with your AccessKey obtained from Picovoice Console. Then, using Xcode, open the generated OctopusDemo.xcworkspace and run the application.

For more information about iOS demos go to demo/ios.

Web Demos

From demo/web run the following in the terminal:

yarn
yarn start

(or)

npm install
npm run start

Open http://localhost:5000 in your browser to try the demo.

SDKs

Python

Create an instance of the engine:

import pvoctopus
access_key = ""  # AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
handle = pvoctopus.create(access_key=access_key)

Index your raw audio data or file:

audio_data = [..]
metadata = handle.index(audio_data)
# or 
audio_file_path = "/path/to/my/audiofile.wav"
metadata = handle.index_file(audio_file_path)

Then search the metadata for phrases:

{match.end_sec} ({match.probablity})") ">
avocado_matches = matches['avocado']
for match in avocado_matches:
    print(f"Match for `avocado`: {match.start_sec} -> {match.end_sec} ({match.probablity})")

When done the handle resources have to be released explicitly:

handle.delete()

C

pv_octopus.h header file contains relevant information. Build an instance of the object:

    const char *model_path = "..."; // absolute path to the model file available at `lib/common/octopus_params.pv`
    const char *access_key = "..." // AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
    pv_octopus_t *handle = NULL;
    pv_status_t status = pv_octopus_init(access_key, model_path, &handle);
    if (status != PV_STATUS_SUCCESS) {
        // error handling logic
    }

Index audio data using constructed object:

const char *audio_path = "..."; // absolute path to the audio file to be indexed
void *indices = NULL;
int32_t num_indices_bytes = 0;
pv_status_t status = pv_octopus_index_file(handle, audio_path, &indices, &num_indices_bytes);
if (status != PV_STATUS_SUCCESS) {
    // error handling logic
}

Search the indexed data:

const char *phrase = "...";
pv_octopus_match_t *matches = NULL;
int32_t num_matches = 0;
pv_status_t status = pv_octopus_search(handle, indices, num_indices_bytes, phrase, &matches, &num_matches);
if (status != PV_STATUS_SUCCESS) {
    // error handling logic
}

When done be sure to release the acquired resources:

pv_octopus_delete(handle);

Android

Create an instance of the engine:

import ai.picovoice.octopus.*;

final String accessKey = "..."; // AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
try {
    Octopus handle = new Octopus.Builder(accessKey).build(appContext);
} catch (OctopusException ex) { }

Index audio data using constructed object:

final String audioFilePath = "/path/to/my/audiofile.wav"
try {
    OctopusMetadata metadata = handle.indexAudioFile(audioFilePath);
} catch (OctopusException ex) { }

Search the indexed data:

HashMap <String, OctopusMatch[]> matches = handle.search(metadata, phrases);

for (Map.Entry<String, OctopusMatch[]> entry : map.entrySet()) {
    final String phrase = entry.getKey();
    for (OctopusMatch phraseMatch : entry.getValue()){
        final float startSec = phraseMatch.getStartSec();
        final float endSec = phraseMatch.getEndSec();
        final float probability = phraseMatch.getProbability();
    }
}

When done be sure to release the acquired resources:

metadata.delete();
handle.delete();

iOS

Create an instance of the engine:

import Octopus

let accessKey : String = // .. AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
do {
    let handle = try Octopus(accessKey: accessKey)
} catch { }

Index audio data using constructed object:

let audioFilePath = "/path/to/my/audiofile.wav"
do {
    let metadata = try handle.indexAudioFile(path: audioFilePath)
} catch { }

Search the indexed data:

let matches: Dictionary<String, [OctopusMatch]> = try octopus.search(metadata: metadata, phrases: phrases)
for (phrase, phraseMatches) in matches {
    for phraseMatch in phraseMatches {
        var startSec = phraseMatch.startSec;
        var endSec = phraseMatch.endSec;
        var probability = phraseMatch.probability;
    }
}

When done be sure to release the acquired resources:

handle.delete();

Web

Octopus is available on modern web browsers (i.e., not Internet Explorer) via WebAssembly. Octopus is provided pre-packaged as a Web Worker to allow it to perform processing off the main thread.

Vanilla JavaScript and HTML (CDN Script Tag)

">
>
<html lang="en">

<head>
  <script src="https://unpkg.com/@picovoice/octopus-web-en-worker/dist/iife/index.js">script>
  <script type="application/javascript">
    // The metadata object to save the result of indexing for later searches
    let octopusMetadata = undefined

    function octopusIndexCallback(metadata) {
      octopusMetadata = metadata
    }

    function octopusSearchCallback(matches) {
      console.log(`Search results (${matches.length}):`)
      console.log(`Start: ${match.startSec}s -> End: ${match.endSec}s (Probability: ${match.probability})`)
    }

    async function startOctopus() {
      // Create an Octopus Worker
      // Note: you receive a Worker object, _not_ an individual Octopus instance
      const accessKey = ... // AccessKey string provided by Picovoice Console (https://picovoice.ai/console/)
      const OctopusWorker = await OctopusWorkerFactory.create(
        accessKey,
        octopusIndexCallback,
        octopusSearchCallback
      )
    }

    document.addEventListener("DOMContentLoaded", function () {
      startOctopus();
      // Send Octopus the audio signal
      const audioSignal = new Int16Array(/* Provide data with correct format*/)
      OctopusWorker.postMessage({
        command: "index",
        input: audioSignal,
      });
    });

    const searchText = ...
    OctopusWorker.postMessage({
      command: "search",
      metadata: octopusMetadata,
      searchPhrase: searchText,
    });
  script>
head>

<body>body>

html>

Vanilla JavaScript and HTML (ES Modules)

yarn add @picovoice/octopus-web-en-worker

(or)

npm install @picovoice/octopus-web-en-worker
End: ${match.endSec}s (Probability: ${match.probability})`); } async function startOctopus() { // Create an Octopus Worker // Note: you receive a Worker object, _not_ an individual Octopus instance const accessKey = // .. AccessKey provided by Picovoice Console (https://picovoice.ai/console/) const OctopusWorker = await OctopusWorkerFactory.create( accessKey, octopusIndexCallback, octopusSearchCallback ); } startOctopus() ... // Send Octopus the audio signal const audioSignal = new Int16Array(/* Provide data with correct format*/) OctopusWorker.postMessage({ command: "index", input: audioSignal, }); ... const searchText = ...; OctopusWorker.postMessage({ command: "search", metadata: octopusMetadata, searchPhrase: searchText, }); ">
import { OctopusWebEnWorker } from "@picovoice/octopus-web-en-worker";

// The metadata object to save the result of indexing for later searches
let octopusMetadata = undefined;

function octopusIndexCallback(metadata) {
  octopusMetadata = metadata;
}

function octopusSearchCallback(matches) {
  console.log(`Search results (${matches.length}):`);
  console.log(`Start: ${match.startSec}s -> End: ${match.endSec}s (Probability: ${match.probability})`);
}


async function startOctopus() {
  // Create an Octopus Worker
  // Note: you receive a Worker object, _not_ an individual Octopus instance
  const accessKey = // .. AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
  const OctopusWorker = await OctopusWorkerFactory.create(
    accessKey,
    octopusIndexCallback,
    octopusSearchCallback
  );
}

startOctopus()

...

// Send Octopus the audio signal
const audioSignal = new Int16Array(/* Provide data with correct format*/)
OctopusWorker.postMessage({
  command: "index",
  input: audioSignal,
});

...

const searchText = ...;
OctopusWorker.postMessage({
  command: "search",
  metadata: octopusMetadata,
  searchPhrase: searchText,
});

Releases

v1.0.0 Oct 8th, 2021

  • Initial release.
You might also like...
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

This is a virtual picture dragging application. Users may virtually slide photos across the screen. The distance between the index and middle fingers determines the movement. Smaller distances indicate click and motion, whereas bigger distances indicate only hand movement.
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Comments
  • Bump terser from 5.13.1 to 5.16.1 in /binding/web

    Bump terser from 5.13.1 to 5.16.1 in /binding/web

    Bumps terser from 5.13.1 to 5.16.1.

    Changelog

    Sourced from terser's changelog.

    v5.16.1

    • Properly handle references in destructurings (const { [reference]: val } = ...)
    • Allow parsing of .#privatefield in nested classes
    • Do not evaluate operations that return large strings if that would make the output code larger
    • Make collapse_vars handle block scope correctly
    • Internal improvements: Typos (#1311), more tests, small-scale refactoring

    v5.16.0

    • Disallow private fields in object bodies (#1011)
    • Parse #privatefield in object (#1279)
    • Compress #privatefield in object

    v5.15.1

    • Fixed missing parentheses around optional chains
    • Avoid bare let or const as the bodies of if statements (#1253)
    • Small internal fixes (#1271)
    • Avoid inlining a class twice and creating two equivalent but !== classes.

    v5.15.0

    • Basic support for ES2022 class static initializer blocks.
    • Add AudioWorkletNode constructor options to domprops list (#1230)
    • Make identity function inliner not inline id(...expandedArgs)

    v5.14.2

    • Security fix for RegExps that should not be evaluated (regexp DDOS)
    • Source maps improvements (#1211)
    • Performance improvements in long property access evaluation (#1213)

    v5.14.1

    • keep_numbers option added to TypeScript defs (#1208)
    • Fixed parsing of nested template strings (#1204)

    v5.14.0

    • Switched to @​jridgewell/source-map for sourcemap generation (#1190, #1181)
    • Fixed source maps with non-terminated segments (#1106)
    • Enabled typescript types to be imported from the package (#1194)
    • Extra DOM props have been added (#1191)
    • Delete the AST while generating code, as a means to save RAM
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Convert c owned memory into ctypes owned memory for metadata objects

    Convert c owned memory into ctypes owned memory for metadata objects

    ctypes doesn't free the c_void_p from c, but if we convert it into a block of memory created from ctypes (serialize -> deserialize), then it will garbage collect and free when appropriate.

    opened by ErisMik 1
Releases(v1.2)
  • v1.2(Aug 12, 2022)

Owner
Picovoice
Edge Voice AI Platform
Picovoice
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023