On-device speech-to-index engine powered by deep learning.

Overview

Octopus

GitHub

PyPI Maven Central Cocoapods

Made in Vancouver, Canada by Picovoice

Twitter URL YouTube Channel Views

Octopus is Picovoice's Speech-to-Index engine. It directly indexes speech without relying on a text representation. This acoustic-only approach boosts accuracy by removing out-of-vocabulary limitation and eliminating the problem of competing hypothesis (e.g. homophones)

Table of Contents

Demos

Python Demos

Install the demo package:

sudo pip3 install pvoctopusdemo

Run the following in the terminal:

octopus_demo  --access_key {AccessKey} --audio_paths ${AUDIO_PATHS}

Replace ${AccessKey} with your AccessKey obtained from Picovoice Console and ${AUDIO_PATHS} with a space-separated list of audio files. Octopus starts processing the audio files and asks you for search phrases and shows results interactively.

For more information about the Python demos go to demo/python.

C Demos

Build the demo:

cmake -S demo/c/ -B demo/c/build && cmake --build demo/c/build

Index a given audio file:

./demo/c/build/octopus_index_demo ${LIBRARY_PATH} ${ACCESS_KEY} ${AUDIO_PATH} ${INDEX_PATH}

Then search the index for a given phrase:

./demo/c/build/octopus_search_demo ${LIBRARY_PATH} ${MODEL_PATH} ${ACCESS_KEY} ${INDEX_PATH} ${SEARCH_PHRASE}

Replace ${LIBRARY_PATH} with path to appropriate library available under lib, ${ACCESS_KEY} with AccessKey obtained from Picovoice Console, ${AUDIO_PATH} with the path to a given audio file and format, ${INDEX_PATH} with the path to cached index file and ${SEARCH_PHRASE} to a search phrase.

For more information about C demos go to demo/c.

Android Demos

Using Android Studio, open demo/android/OctopusDemo as an Android project.

Replace "${YOUR_ACCESS_KEY_HERE}" inside MainActivity.java with your AccessKey obtained from Picovoice Console. Then run the demo.

For more information about Android demos go to demo/android.

iOS Demos

From the demo/ios/OctopusDemo, run the following to install the Octopus CocoaPod:

pod install

Replace "{YOUR_ACCESS_KEY_HERE}" inside ViewModel.swift with your AccessKey obtained from Picovoice Console. Then, using Xcode, open the generated OctopusDemo.xcworkspace and run the application.

For more information about iOS demos go to demo/ios.

Web Demos

From demo/web run the following in the terminal:

yarn
yarn start

(or)

npm install
npm run start

Open http://localhost:5000 in your browser to try the demo.

SDKs

Python

Create an instance of the engine:

import pvoctopus
access_key = ""  # AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
handle = pvoctopus.create(access_key=access_key)

Index your raw audio data or file:

audio_data = [..]
metadata = handle.index(audio_data)
# or 
audio_file_path = "/path/to/my/audiofile.wav"
metadata = handle.index_file(audio_file_path)

Then search the metadata for phrases:

{match.end_sec} ({match.probablity})") ">
avocado_matches = matches['avocado']
for match in avocado_matches:
    print(f"Match for `avocado`: {match.start_sec} -> {match.end_sec} ({match.probablity})")

When done the handle resources have to be released explicitly:

handle.delete()

C

pv_octopus.h header file contains relevant information. Build an instance of the object:

    const char *model_path = "..."; // absolute path to the model file available at `lib/common/octopus_params.pv`
    const char *access_key = "..." // AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
    pv_octopus_t *handle = NULL;
    pv_status_t status = pv_octopus_init(access_key, model_path, &handle);
    if (status != PV_STATUS_SUCCESS) {
        // error handling logic
    }

Index audio data using constructed object:

const char *audio_path = "..."; // absolute path to the audio file to be indexed
void *indices = NULL;
int32_t num_indices_bytes = 0;
pv_status_t status = pv_octopus_index_file(handle, audio_path, &indices, &num_indices_bytes);
if (status != PV_STATUS_SUCCESS) {
    // error handling logic
}

Search the indexed data:

const char *phrase = "...";
pv_octopus_match_t *matches = NULL;
int32_t num_matches = 0;
pv_status_t status = pv_octopus_search(handle, indices, num_indices_bytes, phrase, &matches, &num_matches);
if (status != PV_STATUS_SUCCESS) {
    // error handling logic
}

When done be sure to release the acquired resources:

pv_octopus_delete(handle);

Android

Create an instance of the engine:

import ai.picovoice.octopus.*;

final String accessKey = "..."; // AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
try {
    Octopus handle = new Octopus.Builder(accessKey).build(appContext);
} catch (OctopusException ex) { }

Index audio data using constructed object:

final String audioFilePath = "/path/to/my/audiofile.wav"
try {
    OctopusMetadata metadata = handle.indexAudioFile(audioFilePath);
} catch (OctopusException ex) { }

Search the indexed data:

HashMap <String, OctopusMatch[]> matches = handle.search(metadata, phrases);

for (Map.Entry<String, OctopusMatch[]> entry : map.entrySet()) {
    final String phrase = entry.getKey();
    for (OctopusMatch phraseMatch : entry.getValue()){
        final float startSec = phraseMatch.getStartSec();
        final float endSec = phraseMatch.getEndSec();
        final float probability = phraseMatch.getProbability();
    }
}

When done be sure to release the acquired resources:

metadata.delete();
handle.delete();

iOS

Create an instance of the engine:

import Octopus

let accessKey : String = // .. AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
do {
    let handle = try Octopus(accessKey: accessKey)
} catch { }

Index audio data using constructed object:

let audioFilePath = "/path/to/my/audiofile.wav"
do {
    let metadata = try handle.indexAudioFile(path: audioFilePath)
} catch { }

Search the indexed data:

let matches: Dictionary<String, [OctopusMatch]> = try octopus.search(metadata: metadata, phrases: phrases)
for (phrase, phraseMatches) in matches {
    for phraseMatch in phraseMatches {
        var startSec = phraseMatch.startSec;
        var endSec = phraseMatch.endSec;
        var probability = phraseMatch.probability;
    }
}

When done be sure to release the acquired resources:

handle.delete();

Web

Octopus is available on modern web browsers (i.e., not Internet Explorer) via WebAssembly. Octopus is provided pre-packaged as a Web Worker to allow it to perform processing off the main thread.

Vanilla JavaScript and HTML (CDN Script Tag)

">
>
<html lang="en">

<head>
  <script src="https://unpkg.com/@picovoice/octopus-web-en-worker/dist/iife/index.js">script>
  <script type="application/javascript">
    // The metadata object to save the result of indexing for later searches
    let octopusMetadata = undefined

    function octopusIndexCallback(metadata) {
      octopusMetadata = metadata
    }

    function octopusSearchCallback(matches) {
      console.log(`Search results (${matches.length}):`)
      console.log(`Start: ${match.startSec}s -> End: ${match.endSec}s (Probability: ${match.probability})`)
    }

    async function startOctopus() {
      // Create an Octopus Worker
      // Note: you receive a Worker object, _not_ an individual Octopus instance
      const accessKey = ... // AccessKey string provided by Picovoice Console (https://picovoice.ai/console/)
      const OctopusWorker = await OctopusWorkerFactory.create(
        accessKey,
        octopusIndexCallback,
        octopusSearchCallback
      )
    }

    document.addEventListener("DOMContentLoaded", function () {
      startOctopus();
      // Send Octopus the audio signal
      const audioSignal = new Int16Array(/* Provide data with correct format*/)
      OctopusWorker.postMessage({
        command: "index",
        input: audioSignal,
      });
    });

    const searchText = ...
    OctopusWorker.postMessage({
      command: "search",
      metadata: octopusMetadata,
      searchPhrase: searchText,
    });
  script>
head>

<body>body>

html>

Vanilla JavaScript and HTML (ES Modules)

yarn add @picovoice/octopus-web-en-worker

(or)

npm install @picovoice/octopus-web-en-worker
End: ${match.endSec}s (Probability: ${match.probability})`); } async function startOctopus() { // Create an Octopus Worker // Note: you receive a Worker object, _not_ an individual Octopus instance const accessKey = // .. AccessKey provided by Picovoice Console (https://picovoice.ai/console/) const OctopusWorker = await OctopusWorkerFactory.create( accessKey, octopusIndexCallback, octopusSearchCallback ); } startOctopus() ... // Send Octopus the audio signal const audioSignal = new Int16Array(/* Provide data with correct format*/) OctopusWorker.postMessage({ command: "index", input: audioSignal, }); ... const searchText = ...; OctopusWorker.postMessage({ command: "search", metadata: octopusMetadata, searchPhrase: searchText, }); ">
import { OctopusWebEnWorker } from "@picovoice/octopus-web-en-worker";

// The metadata object to save the result of indexing for later searches
let octopusMetadata = undefined;

function octopusIndexCallback(metadata) {
  octopusMetadata = metadata;
}

function octopusSearchCallback(matches) {
  console.log(`Search results (${matches.length}):`);
  console.log(`Start: ${match.startSec}s -> End: ${match.endSec}s (Probability: ${match.probability})`);
}


async function startOctopus() {
  // Create an Octopus Worker
  // Note: you receive a Worker object, _not_ an individual Octopus instance
  const accessKey = // .. AccessKey provided by Picovoice Console (https://picovoice.ai/console/)
  const OctopusWorker = await OctopusWorkerFactory.create(
    accessKey,
    octopusIndexCallback,
    octopusSearchCallback
  );
}

startOctopus()

...

// Send Octopus the audio signal
const audioSignal = new Int16Array(/* Provide data with correct format*/)
OctopusWorker.postMessage({
  command: "index",
  input: audioSignal,
});

...

const searchText = ...;
OctopusWorker.postMessage({
  command: "search",
  metadata: octopusMetadata,
  searchPhrase: searchText,
});

Releases

v1.0.0 Oct 8th, 2021

  • Initial release.
You might also like...
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

This is a virtual picture dragging application. Users may virtually slide photos across the screen. The distance between the index and middle fingers determines the movement. Smaller distances indicate click and motion, whereas bigger distances indicate only hand movement.
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Comments
  • Bump terser from 5.13.1 to 5.16.1 in /binding/web

    Bump terser from 5.13.1 to 5.16.1 in /binding/web

    Bumps terser from 5.13.1 to 5.16.1.

    Changelog

    Sourced from terser's changelog.

    v5.16.1

    • Properly handle references in destructurings (const { [reference]: val } = ...)
    • Allow parsing of .#privatefield in nested classes
    • Do not evaluate operations that return large strings if that would make the output code larger
    • Make collapse_vars handle block scope correctly
    • Internal improvements: Typos (#1311), more tests, small-scale refactoring

    v5.16.0

    • Disallow private fields in object bodies (#1011)
    • Parse #privatefield in object (#1279)
    • Compress #privatefield in object

    v5.15.1

    • Fixed missing parentheses around optional chains
    • Avoid bare let or const as the bodies of if statements (#1253)
    • Small internal fixes (#1271)
    • Avoid inlining a class twice and creating two equivalent but !== classes.

    v5.15.0

    • Basic support for ES2022 class static initializer blocks.
    • Add AudioWorkletNode constructor options to domprops list (#1230)
    • Make identity function inliner not inline id(...expandedArgs)

    v5.14.2

    • Security fix for RegExps that should not be evaluated (regexp DDOS)
    • Source maps improvements (#1211)
    • Performance improvements in long property access evaluation (#1213)

    v5.14.1

    • keep_numbers option added to TypeScript defs (#1208)
    • Fixed parsing of nested template strings (#1204)

    v5.14.0

    • Switched to @​jridgewell/source-map for sourcemap generation (#1190, #1181)
    • Fixed source maps with non-terminated segments (#1106)
    • Enabled typescript types to be imported from the package (#1194)
    • Extra DOM props have been added (#1191)
    • Delete the AST while generating code, as a means to save RAM
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Convert c owned memory into ctypes owned memory for metadata objects

    Convert c owned memory into ctypes owned memory for metadata objects

    ctypes doesn't free the c_void_p from c, but if we convert it into a block of memory created from ctypes (serialize -> deserialize), then it will garbage collect and free when appropriate.

    opened by ErisMik 1
Releases(v1.2)
  • v1.2(Aug 12, 2022)

Owner
Picovoice
Edge Voice AI Platform
Picovoice
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022