Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Overview

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

reproducibility task

This is the repository for the paper Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigation, developed by Giacomo Medda, PhD student at University of Cagliari, with the support of Gianni Fenu, Full Professor at University of Cagliari, Mirko Marras, Non-tenure Track Assistant Professor at University of Cagliari, and Ludovico Boratto, Tenure Track Assistant Professor at University of Cagliari.

The goal of the paper was to find a common understanding and practical benchmarks on how and when each procedure of consumer fairness in recommender systems can be used in comparison to the others.

Repository Organization

  • reproducibility_study

    This is the directory that contains the source code of each reproduced paper identified by the author names of the respective paper.

    • Ashokan and Haas: Fairness metrics and bias mitigation strategies for rating predictions
    • Burke et al: Balanced Neighborhoods for Multi-sided Fairness in Recommendation
    • Ekstrand et al: All The Cool Kids, How Do They Fit In. Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
    • Frisch et al: Co-clustering for fair recommendation
    • Kamishima et al: Recommendation Independence
    • Li et al: User-oriented Fairness in Recommendation
    • Rastegarpanah et al: Fighting Fire with Fire. Using Antidote Data to Improve Polarization and Fairness of Recommender Systems
    • Wu et al: Learning Fair Representations for Recommendation. A Graph-based Perspective
  • Preprocessing

    Contains the scripts to preprocess the raw datasets and to generate the input data for each reproduced paper.

  • Evaluation

    Contains the scripts to load the predictions of each reproduced paper, compute the metrics and generate plots and tables in latex and markdown forms.

  • Other Folders

    The other folders not already mentioned are part of the codebase that supports the scripts contained in Preprocessing and Evaluation. These directories and their contents are described by README_codebase, since the structure and code inside these folders is only used to support the reproducibility study and it is independent from the specific implementation of each paper.

Reproducibility Pipeline

  • Code Integration.

    The preprocessing of the raw datasets is performed by the scripts.

    The commands to preprocess each dataset are present at the top of the related dataset script, but the procedure is better described inside the REPRODUCE.md. The preprocessed datasets will be saved in data/preprocessed_datasets.

    Once the MovieLens 1M and the Last.FM 1K dataset have been processed, we can pass to the generation of the input data for each reproduced paper:

    The commands to generate the input data for each preprocessed dataset and sensitive attribute are present at the top of the script, but the procedure is better described inside the REPRODUCE.md). The generated input data will be saved in Preprocessing/input_data.

  • Mitigation Execution

    Each paper (folder) listed in the subsection reproducibility_study of Repository Organization contains a REPRODUCE.md file that describes everything to setup, prepare and run each reproduced paper. In particular, instructions to install the dependencies are provided, as well as the specific subfolders to fill with the input data generated in the previous step, in order to properly run the experiments of the selected paper. The procedure for each source code is better described in the already mentioned REPRODUCE.md file.

  • Relevance Estimation and Metrics Computation

    The REPRODUCE.md file contained in each "paper" folder describes also where the predictions can be found at the end of the mitigation procedure and guide the developer on following the instructions of the REPRODUCE.md of Evaluation that contains:

    • metrics_reproduced: script that loads all the predictions of relevance scores and computes the metrics in form of plots and latex tables This is the script that must be configured the most, since the paths of the specific predictions of each paper and model could be copied and pasted inside the script if the filenames do not correspond to what we expect and prepare. The REPRODUCE.MD already mentioned better described these steps and specifying which are the commands to execute to get the desired results.

Installation

Considering the codebase and the different versions of libraries used by each paper, multiple Python versions are mandatory to execute properly this code.

The codebase (that is the code not inside reproducibility_study, Preprocessing, Evaluation) needs a Python 3.8 installation and all the necessary dependencies can be installed with the requirements.txt file in the root of the repository with the following command in Windows:

pip install -r requirements.txt

or in Linux:

pip3 install -r requirements.txt

The installation of each reproducible paper is thoroughly described in the REPRODUCE.md that you can find in each paper folder, but every folder contains a requirements.txt file that you can use to install the dependencies in the same way. We recommend to use virtual environments at least for each reproduced paper, since some require specific versions of Python (2, 3, 3.7) and a virtual environment for each paper will maintain a good order in the code organization. Virtual environments can be created in different ways depending on the Python version and on the system. The Python Documentation describes the creation of virtual environments for Python >= 3.5, while the virtualenv Website can be used for Python 2.

Results

Top-N Recommendation Gender

Top-N Recommendation Gender

Top-N Recommendation Age

Top-N Recommendation Age

Rating Prediction Gender

Rating Prediction Gender

Rating Prediction Age

Rating Prediction Age

Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022