Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Overview

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

reproducibility task

This is the repository for the paper Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigation, developed by Giacomo Medda, PhD student at University of Cagliari, with the support of Gianni Fenu, Full Professor at University of Cagliari, Mirko Marras, Non-tenure Track Assistant Professor at University of Cagliari, and Ludovico Boratto, Tenure Track Assistant Professor at University of Cagliari.

The goal of the paper was to find a common understanding and practical benchmarks on how and when each procedure of consumer fairness in recommender systems can be used in comparison to the others.

Repository Organization

  • reproducibility_study

    This is the directory that contains the source code of each reproduced paper identified by the author names of the respective paper.

    • Ashokan and Haas: Fairness metrics and bias mitigation strategies for rating predictions
    • Burke et al: Balanced Neighborhoods for Multi-sided Fairness in Recommendation
    • Ekstrand et al: All The Cool Kids, How Do They Fit In. Popularity and Demographic Biases in Recommender Evaluation and Effectiveness
    • Frisch et al: Co-clustering for fair recommendation
    • Kamishima et al: Recommendation Independence
    • Li et al: User-oriented Fairness in Recommendation
    • Rastegarpanah et al: Fighting Fire with Fire. Using Antidote Data to Improve Polarization and Fairness of Recommender Systems
    • Wu et al: Learning Fair Representations for Recommendation. A Graph-based Perspective
  • Preprocessing

    Contains the scripts to preprocess the raw datasets and to generate the input data for each reproduced paper.

  • Evaluation

    Contains the scripts to load the predictions of each reproduced paper, compute the metrics and generate plots and tables in latex and markdown forms.

  • Other Folders

    The other folders not already mentioned are part of the codebase that supports the scripts contained in Preprocessing and Evaluation. These directories and their contents are described by README_codebase, since the structure and code inside these folders is only used to support the reproducibility study and it is independent from the specific implementation of each paper.

Reproducibility Pipeline

  • Code Integration.

    The preprocessing of the raw datasets is performed by the scripts.

    The commands to preprocess each dataset are present at the top of the related dataset script, but the procedure is better described inside the REPRODUCE.md. The preprocessed datasets will be saved in data/preprocessed_datasets.

    Once the MovieLens 1M and the Last.FM 1K dataset have been processed, we can pass to the generation of the input data for each reproduced paper:

    The commands to generate the input data for each preprocessed dataset and sensitive attribute are present at the top of the script, but the procedure is better described inside the REPRODUCE.md). The generated input data will be saved in Preprocessing/input_data.

  • Mitigation Execution

    Each paper (folder) listed in the subsection reproducibility_study of Repository Organization contains a REPRODUCE.md file that describes everything to setup, prepare and run each reproduced paper. In particular, instructions to install the dependencies are provided, as well as the specific subfolders to fill with the input data generated in the previous step, in order to properly run the experiments of the selected paper. The procedure for each source code is better described in the already mentioned REPRODUCE.md file.

  • Relevance Estimation and Metrics Computation

    The REPRODUCE.md file contained in each "paper" folder describes also where the predictions can be found at the end of the mitigation procedure and guide the developer on following the instructions of the REPRODUCE.md of Evaluation that contains:

    • metrics_reproduced: script that loads all the predictions of relevance scores and computes the metrics in form of plots and latex tables This is the script that must be configured the most, since the paths of the specific predictions of each paper and model could be copied and pasted inside the script if the filenames do not correspond to what we expect and prepare. The REPRODUCE.MD already mentioned better described these steps and specifying which are the commands to execute to get the desired results.

Installation

Considering the codebase and the different versions of libraries used by each paper, multiple Python versions are mandatory to execute properly this code.

The codebase (that is the code not inside reproducibility_study, Preprocessing, Evaluation) needs a Python 3.8 installation and all the necessary dependencies can be installed with the requirements.txt file in the root of the repository with the following command in Windows:

pip install -r requirements.txt

or in Linux:

pip3 install -r requirements.txt

The installation of each reproducible paper is thoroughly described in the REPRODUCE.md that you can find in each paper folder, but every folder contains a requirements.txt file that you can use to install the dependencies in the same way. We recommend to use virtual environments at least for each reproduced paper, since some require specific versions of Python (2, 3, 3.7) and a virtual environment for each paper will maintain a good order in the code organization. Virtual environments can be created in different ways depending on the Python version and on the system. The Python Documentation describes the creation of virtual environments for Python >= 3.5, while the virtualenv Website can be used for Python 2.

Results

Top-N Recommendation Gender

Top-N Recommendation Gender

Top-N Recommendation Age

Top-N Recommendation Age

Rating Prediction Gender

Rating Prediction Gender

Rating Prediction Age

Rating Prediction Age

BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021