(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Overview

Energy-based Latent Aligner for Incremental Learning

Accepted to CVPR 2022

paper

We illustrate an Incremental Learning model trained on a continuum of tasks in the top part of the figure. While learning the current task , the latent representation of Task data gets disturbed, as shown by red arrows. ELI learns an energy manifold, and uses it to counteract this inherent representational shift, as illustrated by green arrows, thereby alleviating forgetting.

Overview

In this work, we propose ELI: Energy-based Latent Aligner for Incremental Learning, which:

  • Learns an energy manifold for the latent representations such that previous task latents will have low energy and the current task latents have high energy values.
  • This learned manifold is used to counter the representational shift that happens during incremental learning.

The implicit regularization that is offered by our proposed methodology can be used as a plug-and-play module in existing incremental learning methodologies for classification and object-detection.

Toy Experiment

A key hypothesis that we base our methodology is that while learning a new task, the latent representations will get disturbed, which will in-turn cause catastrophic forgetting of the previous task, and that an energy manifold can be used to align these latents, such that it alleviates forgetting.

Here, we illustrate a proof-of-concept that our hypothesis is indeed true. We consider a two task experiment on MNIST, where each task contains a subset of classes: = {0, 1, 2, 3, 4}, = {5, 6, 7, 8, 9}.

After learning the second task, the accuracy on test set drops to 20.88%, while experimenting with a 32 dimensional latent space. The latent aligner in ELI provides 62.56% improvement in test accuracy to 83.44%. The visualization of a 512 dimensional latent space after learning in sub-figure (c), indeed shows cluttering due to representational shift. ELI is able to align the latents as shown in sub-figure (d), which alleviates the drop in accuracy from 89.14% to 99.04%.

The code for these toy experiments are in:

Implicitly Recognizing and Aligning Important Latents

latents.mp4

Each row shows how latent dimension is updated by ELI. We see that different dimensions have different degrees of change, which is implicitly decided by our energy-based model.

Classification and Detection Experiments

Code and models for the classification and object detection experiments are inside the respective folders:

Each of these are independent repositories. Please consider them separate.

Citation

If you find our research useful, please consider citing us:

@inproceedings{joseph2022Energy,
  title={Energy-based Latent Aligner for Incremental Learning},
  author={Joseph, KJ and Khan, Salman and Khan, Fahad Shahbaz and Anwar, Rao Muhammad and Balasubramanian, Vineeth},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Our Related Work

  • Open-world Detection Transformer, CVPR 2022. Paper | Code
  • Towards Open World Object Detection, CVPR 2021. (Oral) Paper | Code
  • Incremental Object Detection via Meta-learning, TPAMI 2021. Paper | Code
Owner
Joseph K J
CS PhD Student at IIT-H
Joseph K J
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022