Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

Overview

alpha-GAN

Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXiv preprint arXiv:1706.04987 (2017).

I've got visually reasonable results on CIFAR-10 (see notebook). As the authors state, alpha-GAN is sensitive to changes in the network architectures. It seems important to keep batch normalization out of the code discriminator (C).

Deviations From The Paper

In the original paper (v1 on arXiv), prior and posterior terms are swapped in the code discriminator loss (equations 16 and 17 in Algorithm 1). Authors have confirmed.

Algorithm 1 in the paper is vague as to how each network should be updated; it doesn't account for SGD. The authors have confirmed that each of the four networks is updated separately in their experiments. However, in this implementation, encoder and generator (E and G networks) are updated jointly and share an optimizer. It may be worth revisiting the sequence and separation of optimizers.

This implementation adds the latent space cycle loss alluded to in the paper via an optional hyperparameter z_lambd. When z_lambd is nonzero, generated and reconstructed x will be run through the encoder and compared to the original sampled and encoded z.

Basic Usage

from alphagan import AlphaGAN

E, G, D, C = ... #torch.nn.Module

model = AlphaGAN(E, G, D, C, lambd=10, latent_dim=128)
if use_gpu:
  model = model.cuda()

X_train, X_valid = ... #torch.utils.data.DataSet

train_loader, valid_loader = ... #torch.utils.data.DataLoader

model.fit(train_loader, valid_loader, n_iter=(2,1,1), n_epochs=4, log_fn=print)

# encode and reconstruct
z_valid, x_recon = model(X_valid[:batch_size])

# sample from the generative model
z, x_gen = model(batch_size, mode='sample')

Supply any torch.nn.Module encoder, generator, discriminator, and code discriminator at construction and any torch.optim.Optimizer constructors and torch.utils.DataLoader to fit().

Examples

alphagan/examples/CIFAR.ipynb

Progress Bars

Install tqdm for progress bars. To get working nested progress bars in jupyter notebooks: pip install -e git+https://github.com/dvm-shlee/[email protected]#egg=tqdm

Owner
Victor Shepardson
Victor Shepardson
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021