Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

Related tags

Deep LearningERICA
Overview

ERICA

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

The code is based on huggingface's transformers, the trained models and pre-training data can be downloaded from Google Drive.

Quick Start

You can quickly run our code by following steps:

  • Install dependencies as described in following section.
  • cd to pretrain or finetune directory then download and pre-process data for pre-training or finetuning.

1. Dependencies

Run the following script to install dependencies.

pip install -r requirement.txt

You need to install transformers and apex manually.

transformers We use huggingface transformers to implement Bert and RoBERTa, and the version is 2.5.0. For convenience, we have downloaded transformers into code/pretrain/ so you can easily import it, and we have also modified some lines in the class BertForMaskedLM in src/transformers/modeling_bert.py while keeping the other codes unchanged.

You just need run

pip install .

to install transformers manually.

apex Install apex under the offical guidance.

process pretraining data

In folder prepare_pretrain_data, we provide the codes for processing pre-training data.

2. Pretraining

To pretrain ERICA_bert:

cd code/pretrain

python -m torch.distributed.launch --nproc_per_node 8  main.py  \
    --model DOC  --lr 3e-5 --batch_size_per_gpu 16 --max_epoch 105  \
    --gradient_accumulation_steps 16    --save_step 500  --temperature 0.05  \
    --train_sample  --save_dir ckpt_doc_dw_f_alpha_1_uncased --n_gpu 8  --debug 1  --add_none 1 \
    --alpha 1 --flow 0 --dataset_name none.json  --wiki_loss 1 --doc_loss 1 \
    --change_dataset 1  --start_end_token 0 --bert_model bert \
    --pretraining_size -1 --ablation 0 --cased 0

some explanations for hyper-parameters: temperature (\tau used in loss function of contrastive learning); debug (whether to debug (we provide an example_debug file for pre-training); add_none (whether to add no_relation pair in RD loss); alpha (the proportion of masking (1 means no masking, in experiments, we find masking is not helpful as is described in the main paper, so for all models, we do not mask in the pre-training phase. However, we leave this function here for further research explorations.)); flow (if masking, whether to use a linear decay); wiki_loss (whether to add ED loss); doc_loss (whether to add RD loss); start_end_token (use another entity encoding method); cased (whether to use cased version of BERT).

3. Fine-tuning

Enter each folder for downstream task (document-level / sentence-level relation extraction, entity typing and question answering) fine-tuning. Before fine-tuning, we assume you have already pre-trained an ERICA model. Excecute the bash in each folder for reimplementation.

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI

EmotionUI Software for Multimodalty 2D+3D Facial Expression Recognition (FER) UI. demo screenshot (with RealSense) required packages Python = 3.6 num

Yang Jiao 2 Dec 23, 2021
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022