Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

Related tags

Deep LearningERICA
Overview

ERICA

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

The code is based on huggingface's transformers, the trained models and pre-training data can be downloaded from Google Drive.

Quick Start

You can quickly run our code by following steps:

  • Install dependencies as described in following section.
  • cd to pretrain or finetune directory then download and pre-process data for pre-training or finetuning.

1. Dependencies

Run the following script to install dependencies.

pip install -r requirement.txt

You need to install transformers and apex manually.

transformers We use huggingface transformers to implement Bert and RoBERTa, and the version is 2.5.0. For convenience, we have downloaded transformers into code/pretrain/ so you can easily import it, and we have also modified some lines in the class BertForMaskedLM in src/transformers/modeling_bert.py while keeping the other codes unchanged.

You just need run

pip install .

to install transformers manually.

apex Install apex under the offical guidance.

process pretraining data

In folder prepare_pretrain_data, we provide the codes for processing pre-training data.

2. Pretraining

To pretrain ERICA_bert:

cd code/pretrain

python -m torch.distributed.launch --nproc_per_node 8  main.py  \
    --model DOC  --lr 3e-5 --batch_size_per_gpu 16 --max_epoch 105  \
    --gradient_accumulation_steps 16    --save_step 500  --temperature 0.05  \
    --train_sample  --save_dir ckpt_doc_dw_f_alpha_1_uncased --n_gpu 8  --debug 1  --add_none 1 \
    --alpha 1 --flow 0 --dataset_name none.json  --wiki_loss 1 --doc_loss 1 \
    --change_dataset 1  --start_end_token 0 --bert_model bert \
    --pretraining_size -1 --ablation 0 --cased 0

some explanations for hyper-parameters: temperature (\tau used in loss function of contrastive learning); debug (whether to debug (we provide an example_debug file for pre-training); add_none (whether to add no_relation pair in RD loss); alpha (the proportion of masking (1 means no masking, in experiments, we find masking is not helpful as is described in the main paper, so for all models, we do not mask in the pre-training phase. However, we leave this function here for further research explorations.)); flow (if masking, whether to use a linear decay); wiki_loss (whether to add ED loss); doc_loss (whether to add RD loss); start_end_token (use another entity encoding method); cased (whether to use cased version of BERT).

3. Fine-tuning

Enter each folder for downstream task (document-level / sentence-level relation extraction, entity typing and question answering) fine-tuning. Before fine-tuning, we assume you have already pre-trained an ERICA model. Excecute the bash in each folder for reimplementation.

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022