code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

Related tags

Deep LearningPreSumm
Overview

PreSumm

This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders

Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swith to the dev branch, and use -mode test_text and use -text_src $RAW_SRC.TXT to input your text file. Please still use master branch for normal training and evaluation, dev branch should be only used for test_text mode.

  • abstractive use -task abs, extractive use -task ext
  • use -test_from $PT_FILE$ to use your model checkpoint file.
  • Format of the source text file:
    • For abstractive summarization, each line is a document.
    • If you want to do extractive summarization, please insert [CLS] [SEP] as your sentence boundaries.
  • There are example input files in the raw_data directory
  • If you also have reference summaries aligned with your source input, please use -text_tgt $RAW_TGT.TXT to keep the order for evaluation.

Results on CNN/DailyMail (20/8/2019):

Models ROUGE-1 ROUGE-2 ROUGE-L
Extractive
TransformerExt 40.90 18.02 37.17
BertSumExt 43.23 20.24 39.63
BertSumExt (large) 43.85 20.34 39.90
Abstractive
TransformerAbs 40.21 17.76 37.09
BertSumAbs 41.72 19.39 38.76
BertSumExtAbs 42.13 19.60 39.18

Python version: This code is in Python3.6

Package Requirements: torch==1.1.0 pytorch_transformers tensorboardX multiprocess pyrouge

Updates: For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

Some codes are borrowed from ONMT(https://github.com/OpenNMT/OpenNMT-py)

Trained Models

CNN/DM BertExt

CNN/DM BertExtAbs

CNN/DM TransformerAbs

XSum BertExtAbs

System Outputs

CNN/DM and XSum

Data Preparation For XSum

Pre-processed data

Data Preparation For CNN/Dailymail

Option 1: download the processed data

Pre-processed data

unzip the zipfile and put all .pt files into bert_data

Option 2: process the data yourself

Step 1 Download Stories

Download and unzip the stories directories from here for both CNN and Daily Mail. Put all .story files in one directory (e.g. ../raw_stories)

Step 2. Download Stanford CoreNLP

We will need Stanford CoreNLP to tokenize the data. Download it here and unzip it. Then add the following command to your bash_profile:

export CLASSPATH=/path/to/stanford-corenlp-full-2017-06-09/stanford-corenlp-3.8.0.jar

replacing /path/to/ with the path to where you saved the stanford-corenlp-full-2017-06-09 directory.

Step 3. Sentence Splitting and Tokenization

python preprocess.py -mode tokenize -raw_path RAW_PATH -save_path TOKENIZED_PATH
  • RAW_PATH is the directory containing story files (../raw_stories), JSON_PATH is the target directory to save the generated json files (../merged_stories_tokenized)

Step 4. Format to Simpler Json Files

python preprocess.py -mode format_to_lines -raw_path RAW_PATH -save_path JSON_PATH -n_cpus 1 -use_bert_basic_tokenizer false -map_path MAP_PATH
  • RAW_PATH is the directory containing tokenized files (../merged_stories_tokenized), JSON_PATH is the target directory to save the generated json files (../json_data/cnndm), MAP_PATH is the directory containing the urls files (../urls)

Step 5. Format to PyTorch Files

python preprocess.py -mode format_to_bert -raw_path JSON_PATH -save_path BERT_DATA_PATH  -lower -n_cpus 1 -log_file ../logs/preprocess.log
  • JSON_PATH is the directory containing json files (../json_data), BERT_DATA_PATH is the target directory to save the generated binary files (../bert_data)

Model Training

First run: For the first time, you should use single-GPU, so the code can download the BERT model. Use -visible_gpus -1, after downloading, you could kill the process and rerun the code with multi-GPUs.

Extractive Setting

python train.py -task ext -mode train -bert_data_path BERT_DATA_PATH -ext_dropout 0.1 -model_path MODEL_PATH -lr 2e-3 -visible_gpus 0,1,2 -report_every 50 -save_checkpoint_steps 1000 -batch_size 3000 -train_steps 50000 -accum_count 2 -log_file ../logs/ext_bert_cnndm -use_interval true -warmup_steps 10000 -max_pos 512

Abstractive Setting

TransformerAbs (baseline)

python train.py -mode train -accum_count 5 -batch_size 300 -bert_data_path BERT_DATA_PATH -dec_dropout 0.1 -log_file ../../logs/cnndm_baseline -lr 0.05 -model_path MODEL_PATH -save_checkpoint_steps 2000 -seed 777 -sep_optim false -train_steps 200000 -use_bert_emb true -use_interval true -warmup_steps 8000  -visible_gpus 0,1,2,3 -max_pos 512 -report_every 50 -enc_hidden_size 512  -enc_layers 6 -enc_ff_size 2048 -enc_dropout 0.1 -dec_layers 6 -dec_hidden_size 512 -dec_ff_size 2048 -encoder baseline -task abs

BertAbs

python train.py  -task abs -mode train -bert_data_path BERT_DATA_PATH -dec_dropout 0.2  -model_path MODEL_PATH -sep_optim true -lr_bert 0.002 -lr_dec 0.2 -save_checkpoint_steps 2000 -batch_size 140 -train_steps 200000 -report_every 50 -accum_count 5 -use_bert_emb true -use_interval true -warmup_steps_bert 20000 -warmup_steps_dec 10000 -max_pos 512 -visible_gpus 0,1,2,3  -log_file ../logs/abs_bert_cnndm

BertExtAbs

python train.py  -task abs -mode train -bert_data_path BERT_DATA_PATH -dec_dropout 0.2  -model_path MODEL_PATH -sep_optim true -lr_bert 0.002 -lr_dec 0.2 -save_checkpoint_steps 2000 -batch_size 140 -train_steps 200000 -report_every 50 -accum_count 5 -use_bert_emb true -use_interval true -warmup_steps_bert 20000 -warmup_steps_dec 10000 -max_pos 512 -visible_gpus 0,1,2,3 -log_file ../logs/abs_bert_cnndm  -load_from_extractive EXT_CKPT   
  • EXT_CKPT is the saved .pt checkpoint of the extractive model.

Model Evaluation

CNN/DM

 python train.py -task abs -mode validate -batch_size 3000 -test_batch_size 500 -bert_data_path BERT_DATA_PATH -log_file ../logs/val_abs_bert_cnndm -model_path MODEL_PATH -sep_optim true -use_interval true -visible_gpus 1 -max_pos 512 -max_length 200 -alpha 0.95 -min_length 50 -result_path ../logs/abs_bert_cnndm 

XSum

 python train.py -task abs -mode validate -batch_size 3000 -test_batch_size 500 -bert_data_path BERT_DATA_PATH -log_file ../logs/val_abs_bert_cnndm -model_path MODEL_PATH -sep_optim true -use_interval true -visible_gpus 1 -max_pos 512 -min_length 20 -max_length 100 -alpha 0.9 -result_path ../logs/abs_bert_cnndm 
  • -mode can be {validate, test}, where validate will inspect the model directory and evaluate the model for each newly saved checkpoint, test need to be used with -test_from, indicating the checkpoint you want to use
  • MODEL_PATH is the directory of saved checkpoints
  • use -mode valiadte with -test_all, the system will load all saved checkpoints and select the top ones to generate summaries (this will take a while)
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022