Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Related tags

Deep LearningSLATER
Overview

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.org/abs/2105.08059)

Korkmaz, Y., Dar, S. U., Yurt, M., Ozbey, M., & Cukur, T. (2021). Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers. arXiv preprint arXiv:2105.08059.


Demo

The following commands are used to train and test SLATER to reconstruct undersampled MR acquisitions from single- and multi-coil datasets. You can download pretrained network snaphots and sample datasets from the links given below.

For training the MRI prior we use fully-sampled images, for testing undersampling is performed based on selected acceleration rate. We have used AdamOptimizer in training, RMSPropOptimizer with momentum parameter 0.9 in testing/inference. In the current settings AdamOptimizer is used, you can change underlying optimizer class in dnnlib/tflib/optimizer.py file. You can insert additional paramaters like momentum to the line 87 in the optimizer.py file.

Sample training command for multi-coil (fastMRI) dataset:

python run_network.py --train --gpus=0 --expname=fastmri_t1_train --dataset=fastmri-t1 --data-dir=datasets/multi-coil-datasets/train

Sample reconstruction/test command for fastMRI dataset:

python run_recon_multi_coil.py reconstruct-complex-images --network=pretrained_snapshots/fastmri-t1/network-snapshot-001282.pkl --dataset=fastmri-t1 --acc-rate=4 --contrast=t1 --data-dir=datasets/multi-coil-datasets/test

Sample training command for single-coil (IXI) dataset:

python run_network.py --train --gpus=0 --expname=ixi_t1_train --dataset=ixi_t1 --data-dir=datasets/single-coil-datasets/train

Sample reconstruction/test command for IXI dataset:

python run_recon_single_coil.py reconstruct-magnitude-images --network=pretrained_snapshots/ixi-t1/network-snapshot-001282.pkl --dataset=ixi_t1_test --acc-rate=4 --contrast=t1 --data-dir=datasets/single-coil-datasets/test

Datasets

For IXI dataset image dimensions are 256x256. For fastMRI dataset image dimensions vary with contrasts. (T1: 256x320, T2: 288x384, FLAIR: 256x320).

SLATER requires datasets in the tfrecords format. To create tfrecords file containing new datasets you can use dataset_tool.py:

To create single-coil datasets you need to give magnitude images to dataset_tool.py with create_from_images function by just giving image directory containing images in .png format. We included undersampling masks under datasets/single-coil-datasets/test.

To create multi-coil datasets you need to provide hdf5 files containing fully sampled coil-combined complex images in a variable named 'images_fs' with shape [num_of_images,x,y] (can be modified accordingly). To do this, you can use create_from_hdf5 function in dataset_tool.py.

The MRI priors are trained on coil-combined datasets that are saved in tfrecords files with a 3-channel order of [real, imaginary, dummy]. For test purposes, we included sample coil-sensitivity maps (complex variable with 4-dimensions [x,y,num_of_image,num_of_coils] named 'coil_maps') and undersampling masks (3-dimensions [x,y, num_of_image] named 'map') in the datasets/multi-coil-datasets/test folder in hdf5 format.

Coil-sensitivity-maps are estimated using ESPIRIT (http://people.eecs.berkeley.edu/~mlustig/Software.html). Network implementations use libraries from Gansformer (https://github.com/dorarad/gansformer) and Stylegan-2 (https://github.com/NVlabs/stylegan2) repositories.


Pretrained networks

You can download pretrained network snapshots and datasets from these links. You need to place downloaded folders (datasets and pretrained_snapshots folders) under the main repo to run those sample test commands given above.

Pretrained network snapshots for IXI-T1 and fastMRI-T1 can be downloaded from Google Drive: https://drive.google.com/drive/folders/1_69T1KUeSZCpKD3G37qgDyAilWynKhEc?usp=sharing

Sample training and test datasets for IXI-T1 and fastMRI-T1 can be downloaded from Google Drive: https://drive.google.com/drive/folders/1hLC8Pv7EzAH03tpHquDUuP-lLBasQ23Z?usp=sharing


Notice for training with multi-coil datasets

To train multi-coil (complex) datasets you need to remove/add some lines in training_loop.py:

  • Comment out line 8.
  • Delete comment at line 9.
  • Comment out line 23.

Citation

You are encouraged to modify/distribute this code. However, please acknowledge this code and cite the paper appropriately.

@article{korkmaz2021unsupervised,
  title={Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers},
  author={Korkmaz, Yilmaz and Dar, Salman UH and Yurt, Mahmut and {\"O}zbey, Muzaffer and {\c{C}}ukur, Tolga},
  journal={arXiv preprint arXiv:2105.08059},
  year={2021}
  }

(c) ICON Lab 2021


Prerequisites

  • Python 3.6 --
  • CuDNN 10.1 --
  • TensorFlow 1.14 or 1.15

Acknowledgements

This code uses libraries from the StyleGAN-2 (https://github.com/NVlabs/stylegan2) and Gansformer (https://github.com/dorarad/gansformer) repositories.

For questions/comments please send me an email: [email protected]


Owner
ICON Lab
ICON Lab
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Bytedance Inc. 2.5k Jan 06, 2023