Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Overview

Tutoriais Públicos

GitHub last commit

Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Os tutoriais são publicados principalmente no Instagram e Linkedin da Trading com Dados. Este repositório serve, portanto, como um repositório de conteúdo para quem deseja de forma simples e direta encontrar os códigos produzidos para estes tutoriais.

Faremos o possível para manter esse repositório atualizado e contendo todos os tutoriais de conteúdo que desenvolvemos para nossas redes sociais. No entanto, não podemos garantir que a totalidade do conteúdo estará disponível aqui.

A maior parte dos códigos tem como nome aqui no GitHub o mesmo título do conteúdo no Instagram. Se o nome não for o mesmo, haverá pelo menos similaridade no que está descrito aqui com o título no Instagram.

A forma mais fácil de encontrar os códigos é através do ID presente depois do nome do código, que na verdade é apenas a data quando o código foi postado na seguinte sequência: ano, mês e dia, tudo junto. Exemplo: código criado no dia 03 de janeiro de 2022 possui como ID 20220103.

Atenção: Os códigos desenvolvidos para o canal do YouTube estão em um outro repositório. Para visitá-lo, clique aqui.

REPOSITÓRIO EM CONSTRUÇÃO

2021

  1. Como obter dados de ações em 5 simples passos (2021)
  2. Comece a programar em Python em 1 minuto (2021)
  3. Seu primeiro gráfico de candle no Python em 1 minuto (2021)
  4. Matriz de correlação entre ativos no Python em 5 minutos (2021)
  5. Visualize vários ativos no mesmo gráfico no Python em 5 minutos (2021)
  6. Compare a sua carteira com o IBOV em 5 minutos (20210824)
  7. Obtendo dados de dividendos (20210904)
  8. Matriz de risco vs. retorno no Python (20210919)
  9. Como obter dados de ações no Python (ou ETFs, FIIs, BDRs, cripto, dólar) (20210815)
  10. Compare sua carteira com o CDI (20210904)
  11. Como criar médias móveis simples no Python em 5 minutos (20211105)
  12. Visualize as 7 maiores criptos no Python em 5 minutos (20221108)
  13. Capture a cotação do mini-índice com tempo real no Python utilizando o Metatrader (20211110)
  14. Estudo de caso MGLU (20211208)
  15. Sua carteira bate o dólar? Faça a comparação no Python em 5 minutos (20211209)

2022

  1. Obtenha dados de criptomoedas com Python em menos de 5 minutos (20220103)
  2. Comparação entre carteiras (20220201)
  3. Tutorial sobre Quantstats (20220218)
  4. Descubra os investidores institucionais de um papel com o Python
  5. Você está comparando ativos da forma correta?
  6. Comece a programar em Python em 1 minuto (incluindo gráfico interativo de candle)
  7. Ciclos de Mercado: avaliando a sazonalidade anual do IBOV (20220330)
  8. Spread ações ON/PN: exemplo com PETR3 e PETR4 (20220406)
  9. Maiores crises econômicas pós guerras mundiais em diferentes escalas gráficas (20220423)
Owner
Trading com Dados
Edtech focused on teaching Quantitative Finance and Data Science for Financial Markets.
Trading com Dados
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
PyTorch implementation of paper: AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer, ICCV 2021.

AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer [Paper] [PyTorch Implementation] [Paddle Implementation] Overview This reposit

148 Dec 30, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022