The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Overview

Climatehack

This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992.

Final Leaderboard

An overview of our approach can be found here.

Example predictions:

Setup

conda env create -f environment.yaml
conda activate climatehack
python -m ipykernel install --user --name=climatehack

First, download data by running data/download_data.ipynb. Alternatively, you can find preprocessed data files here. Save them into the data folder. We used train.npz and test.npz. They consist of data temporally cropped from 10am to 4pm UK time across the entire dataset. You could also use data_good_sun_2020.npz and data_good_sun_2021.npz, which consist of all samples where the sun elevation is at least 10 degrees. Because these crops produced datasets that could fit in-memory, all our dataloaders work in-memory.

Best Submission

Our best submission earned scores exceeding 0.85 on the Climatehack leaderboard. It is relatively simple and uses the fastai library to pick a base model, optimizer, and learning rate scheduler. After some experimentation, we chose xse_resnext50_deeper. We turned it into a UNET and trained it. More info is in the slides.

To train:

cd best-submission
bash train.sh

To submit, first move the trained model xse_resnext50_deeper.pth into best-submission/submission.

cd best-submission
python doxa_cli.py user login
bash submit.sh

Also, check out best-submission/test_and_visualize.ipynb to test the model and visualize results in a nice animation. This is how we produced the animations found in figs/model_predictions.gif.

Experiments

We conducted several experiments that showed improvements on a strong baseline. The baseline was OpenClimateFix's skillful nowcasting repo, which itself is a implementation of Deepmind's precipitation forecasting GAN. This baseline is more-or-less copied to experiments/dgmr-original. One important difference is that instead of training the GAN, we just train the generator. This was doing well for us and training the GAN had much slower convergence. This baseline will actually train to a score greater than 0.8 on the Climatehack leaderboard. We didn't have time to properly test these experiments on top of our best model, but we suspect they would improve results. The experiments are summarized below:

Experiment Description Results
DCT-Trick Inspired by this, we use the DCT to turn 128x128 -> 64x16x16 and IDCT to turn 64x16x16 -> 128x128. This leads to a shallower network that is autoregressive at fewer spatial resolutions. We believe this is the first time this has been done with UNETs. A fast implementation is in common/utils.py:create_conv_dct_filter and common/utils.py:get_idct_filter. 1.8-2x speedup, small <0.005 performance drop
Denoising We noticed a lot of blocky artifacts in predictions. These artifacts are reminiscent of JPEG/H.264 compression artifacts. We show a comparison of these artifacts in the slides. We found a pretrained neural network to fix them. This can definitely be done better, but we show a proof-of-concept. No performance drop, small visual improvement. The slides have an example.
CoordConv Meteorological phenomenon are correlated with geographic coordinates. We add 2 input channels for the geographic coordinates in OSGB form. +0.0072 MS-SSIM improvement
Optical Flow Optical flow does well for the first few timesteps. We add 2 input channels for the optical flow vectors. +0.0034 MS-SSIM improvement

The folder experiments/climatehack-submission was used to submit these experiments.

cd experiments/climatehack-submission
python doxa_cli.py user login
bash submit.sh

Use experiments/test_and_visualize.ipynb to test the model and visualize results in a nice animation.

Owner
Jatin Mathur
Undergrad at UIUC. Currently working on satellites with LASSI (https://lassiaero.web.illinois.edu/). Previously @astranis, @robinhood, @fractal, @ncsa
Jatin Mathur
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022