HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

Related tags

Deep LearningHandFold
Overview

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

Wencan Cheng, Jae Hyun Park, Jong Hwan Ko

IEEE International Conference on Computer Vision (ICCV), 2021\

arXiv preprint:https://arxiv.org/abs/2108.05545

  1. Prepare dataset

    please download the ICVL and MSRA dataset, and put them under path './data/ICVL/' and './data/MSRA/', respectively.

    execute instructions in the './preprocess_icvl/' and './preprocess_msra/' for datasets preprocessing

  2. Evaluate

    navigate to "./train_eval" directory

    execute python3 eval_[dataset name]_folding.py --model [saved model name] --test_path [testing set path]

    for example on ICVL

    python3 eval_icvl_folding.py --model netR_SOTA.pth --test_path ../data/ICVL_center_pre0/Testing/

    or on MSRA

    python3 eval_msra_folding.py --model netR.pth --test_path ../data/msra_preprocess/

    we provided the pre-trained models ('./results/icvlfolding/netR_SOTA.pth' and './results/msrafolding/P0/netR.pth') for testing ICVL and MSRA

    we also provided the predicted labels located at './labels' directory for visualizing the performance through awesome-hand-pose-estimation

  3. If a new training process is needed, please execute the following instructions after step1 is completed

    navigate to "./train_eval" directory

    . for training MSRA

    execute python3 train_msra_folding.py --dataset_path [MSAR dataset path]

    example python3 train_msra_folding.py --dataset_path ../data/msra_preprocess/

    . for training ICVL

    execute python3 train_icvl_folding.py --train_path [ICVL training dataset path] --test_path [ICVL testing dataset path]

If you find our code useful for your research, please cite our paper

@inproceedings{cheng2021handfoldingnet,
  title={HandFoldingNet: A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton},
  author={Cheng, Wencan and Park, Jae Hyun and Ko, Jong Hwan},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={11260--11269},
  year={2021}
}
Owner
cwc1260
cwc1260
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022