CLASP - Contrastive Language-Aminoacid Sequence Pretraining

Related tags

Deep Learningclasp
Overview

CLASP - Contrastive Language-Aminoacid Sequence Pretraining

Repository for creating models pretrained on language and aminoacid sequences similar to ConVIRT, CLIP, and ALIGN.

Work in progress - more updates soon!

Requirements

You can install the requirements with the following

$ python setup.py install --user

Then, you must install Microsoft's sparse attention CUDA kernel with the following two steps.

$ sh install_deepspeed.sh

Next, you need to pip install the package triton

$ pip install triton

If both of the above succeeded, now you can train your long biosequences with CLASP

Usage

import torch
from torch.optim import Adam

from clasp import CLASP, Transformer, tokenize

# instantiate the attention models for text and bioseq

text_enc = Transformer(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 1024
)

bioseq_enc = Transformer(
    num_tokens = 21,
    dim = 512,
    depth = 6,
    seq_len = 512,
    sparse_attn = True
)

# clasp (CLIP) trainer

clasp = CLASP(
    text_encoder = text_enc,
    bioseq_encoder = bioseq_enc
)

# data

text, text_mask = tokenize(['Spike protein S2: HAMAP-Rule:MF_04099'], context_length = 1024, return_mask = True)

bioseq = torch.randint(0, 21, (1, 511))         # when using sparse attention, should be 1 less than the sequence length
bioseq_mask = torch.ones_like(bioseq).bool()

# do the below with large batch sizes for many many iterations

opt = Adam(clasp.parameters(), lr = 3e-4)

loss = clasp(
    text,
    bioseq,
    text_mask = text_mask,
    bioseq_mask = bioseq_mask,
    return_loss = True               # set return loss to True
)

loss.backward()

Once trained

scores = clasp(
    texts,
    bio_seq,
    text_mask = text_mask,
    bioseq_mask = bioseq_mask
)

Resources

See interesting resources (feel free to add interesting material that could be useful).

Citations

@article{zhang2020contrastive,
  title={Contrastive learning of medical visual representations from paired images and text},
  author={Zhang, Yuhao and Jiang, Hang and Miura, Yasuhide and Manning, Christopher D and Langlotz, Curtis P},
  journal={arXiv preprint arXiv:2010.00747},
  year={2020}
}

OpenAI blog post "CLIP: Connecting Text and Images"

@article{radford2021learning,
  title={Learning transferable visual models from natural language supervision},
  author={Radford, Alec and Kim, Jong Wook and Hallacy, Chris and Ramesh, Aditya and Goh, Gabriel and Agarwal, Sandhini and Sastry, Girish and Askell, Amanda and Mishkin, Pamela and Clark, Jack and others},
  journal={arXiv preprint arXiv:2103.00020},
  year={2021}
}
@article{jia2021scaling,
  title={Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision},
  author={Jia, Chao and Yang, Yinfei and Xia, Ye and Chen, Yi-Ting and Parekh, Zarana and Pham, Hieu and Le, Quoc V and Sung, Yunhsuan and Li, Zhen and Duerig, Tom},
  journal={arXiv preprint arXiv:2102.05918},
  year={2021}
}
Owner
Michael Pieler
ML engineer with strong interest in data science and biotech.
Michael Pieler
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022