CLASP - Contrastive Language-Aminoacid Sequence Pretraining

Related tags

Deep Learningclasp
Overview

CLASP - Contrastive Language-Aminoacid Sequence Pretraining

Repository for creating models pretrained on language and aminoacid sequences similar to ConVIRT, CLIP, and ALIGN.

Work in progress - more updates soon!

Requirements

You can install the requirements with the following

$ python setup.py install --user

Then, you must install Microsoft's sparse attention CUDA kernel with the following two steps.

$ sh install_deepspeed.sh

Next, you need to pip install the package triton

$ pip install triton

If both of the above succeeded, now you can train your long biosequences with CLASP

Usage

import torch
from torch.optim import Adam

from clasp import CLASP, Transformer, tokenize

# instantiate the attention models for text and bioseq

text_enc = Transformer(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 1024
)

bioseq_enc = Transformer(
    num_tokens = 21,
    dim = 512,
    depth = 6,
    seq_len = 512,
    sparse_attn = True
)

# clasp (CLIP) trainer

clasp = CLASP(
    text_encoder = text_enc,
    bioseq_encoder = bioseq_enc
)

# data

text, text_mask = tokenize(['Spike protein S2: HAMAP-Rule:MF_04099'], context_length = 1024, return_mask = True)

bioseq = torch.randint(0, 21, (1, 511))         # when using sparse attention, should be 1 less than the sequence length
bioseq_mask = torch.ones_like(bioseq).bool()

# do the below with large batch sizes for many many iterations

opt = Adam(clasp.parameters(), lr = 3e-4)

loss = clasp(
    text,
    bioseq,
    text_mask = text_mask,
    bioseq_mask = bioseq_mask,
    return_loss = True               # set return loss to True
)

loss.backward()

Once trained

scores = clasp(
    texts,
    bio_seq,
    text_mask = text_mask,
    bioseq_mask = bioseq_mask
)

Resources

See interesting resources (feel free to add interesting material that could be useful).

Citations

@article{zhang2020contrastive,
  title={Contrastive learning of medical visual representations from paired images and text},
  author={Zhang, Yuhao and Jiang, Hang and Miura, Yasuhide and Manning, Christopher D and Langlotz, Curtis P},
  journal={arXiv preprint arXiv:2010.00747},
  year={2020}
}

OpenAI blog post "CLIP: Connecting Text and Images"

@article{radford2021learning,
  title={Learning transferable visual models from natural language supervision},
  author={Radford, Alec and Kim, Jong Wook and Hallacy, Chris and Ramesh, Aditya and Goh, Gabriel and Agarwal, Sandhini and Sastry, Girish and Askell, Amanda and Mishkin, Pamela and Clark, Jack and others},
  journal={arXiv preprint arXiv:2103.00020},
  year={2021}
}
@article{jia2021scaling,
  title={Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision},
  author={Jia, Chao and Yang, Yinfei and Xia, Ye and Chen, Yi-Ting and Parekh, Zarana and Pham, Hieu and Le, Quoc V and Sung, Yunhsuan and Li, Zhen and Duerig, Tom},
  journal={arXiv preprint arXiv:2102.05918},
  year={2021}
}
Owner
Michael Pieler
ML engineer with strong interest in data science and biotech.
Michael Pieler
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023