A pre-trained model with multi-exit transformer architecture.

Overview

ElasticBERT

This repository contains finetuning code and checkpoints for ElasticBERT.

Towards Efficient NLP: A Standard Evaluation and A Strong Baseline

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, Xipeng Qiu

Requirements

We recommend using Anaconda for setting up the environment of experiments:

conda create -n elasticbert python=3.8.8
conda activate elasticbert
conda install pytorch==1.8.1 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install -r requirements.txt

Pre-trained Models

We provide the pre-trained weights of ElasticBERT-BASE and ElasticBERT-LARGE, which can be directly used in Huggingface-Transformers.

  • ElasticBERT-BASE: 12 layers, 12 Heads and 768 Hidden Size.
  • ElasticBERT-LARGE: 24 layers, 16 Heads and 1024 Hidden Size.

The pre-trained weights can be downloaded here.

Model MODEL_NAME
ElasticBERT-BASE fnlp/elasticbert-base
ElasticBERT-LARGE fnlp/elasticbert-large

Downstream task datasets

The GLUE task datasets can be downloaded from the GLUE leaderboard

The ELUE task datasets can be downloaded from the ELUE leaderboard

Finetuning in static usage

We provide the finetuning code for both GLUE tasks and ELUE tasks in static usage on ElasticBERT.

For GLUE:

cd finetune-static
bash finetune_glue.sh

For ELUE:

cd finetune-static
bash finetune_elue.sh

Finetuning in dynamic usage

We provide finetuning code to apply two kind of early exiting methods on ElasticBERT.

For early exit using entropy criterion:

cd finetune-dynamic
bash finetune_elue_entropy.sh

For early exit using patience criterion:

cd finetune-dynamic
bash finetune_elue_patience.sh

Please see our paper for more details!

Contact

If you have any problems, raise an issue or contact Xiangyang Liu

Citation

If you find this repo helpful, we'd appreciate it a lot if you can cite the corresponding paper:

@article{liu2021elasticbert,
  author    = {Xiangyang Liu and
               Tianxiang Sun and
               Junliang He and
               Lingling Wu and
               Xinyu Zhang and
               Hao Jiang and
               Zhao Cao and
               Xuanjing Huang and
               Xipeng Qiu},
  title     = {Towards Efficient {NLP:} {A} Standard Evaluation and {A} Strong Baseline},
  journal   = {CoRR},
  volume    = {abs/2110.07038},
  year      = {2021},
  url       = {https://arxiv.org/abs/2110.07038},
  eprinttype = {arXiv},
  eprint    = {2110.07038},
  timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2110-07038.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Owner
fastNLP
由复旦大学的自然语言处理(NLP)团队发起的国产自然语言处理开源项目
fastNLP
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022