Automatic Idiomatic Expression Detection

Related tags

Deep LearningDISC
Overview

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC)

An Idiomatic identifier that detects the presence and span of idiomatic expression in a given sentence.

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. License
  5. Contact
  6. Acknowledgements

About The Project

This project is a supervised idiomatic expression identification method. Given a sentence that contains a potentially idiomatic expression (PIE), the model identifies the span of the PIE if it is indeed used in an idiomatic sense, otherwise, the model does not identify the PIE. The identification is done via checking the smemantic compatibility. More details will be updated here (Detail description, figures, etc.).

The paper will appear in TACL.

Built With

This model is heavily relying the resources/libraries list as following:

Getting Started

The implementation here includes processed data created for MAGPIE random-split dataset. The model checkpoint that trained with MAGPIE random-split is also provided.

Prerequisites

All the dependencies for this project is listed in requirements.txt. You can install them via a standard command:

pip install -r requirements.txt

It is highly recommanded to start a conda environment with PyTorch properly installed based on your hardward before install the other requirements.

Checkpoint

To run the model with a pre-trained checkpoint, please first create a ./checkpoints folder at root. Then, please download the checkpoint from Google Drive via this Link. Please put the checkpoint in the ./checkpoints folder.

Usage

Configuration

Before running the demo or experiments (training or testing), please see the config.py which sets the configuration of the model. Some parameters there, such as MODE needs to be set appropriately for the model to run correctly. Please see comments for more details.

Demo

To start, please go through the examples provided in demo.ipynb. In there, we process a given input sentence into the model input data and then run model inference to extract the idiomatic expression (if present) from the input sentence (visualized).

Data processing

To process a dataset (such as MAGPIE) for model training and testing, please refer to ./data_processing/MAGPIE/read_comp_data_processing.ipynb. It takes a dataset with sententences and their PIE lcoations as input and generate all the necessary files for model training and inference.

Training and Testing

For training and testing, please refer to train.py and test.py. Note that test.py is used to produce evaluation scores as shown in the paper. inference.py is used to produce prediction for sentences.

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Ziheng Zeng - [email protected]

Project Link: https://github.com/your_username/repo_name

Acknowledgements

[TODO]:

Add the following in README:

  • Method detail descrption
  • Method figure
  • Demo walkthrough
  • Data processing tips and instructions Add requirements.txt
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022