Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Overview

Adversarial Attacks on Knowledge Graph Embeddings
via Instance Attribution Methods

This is the code repository to accompany the EMNLP 2021 paper on adversarial attacks on KGE models.
For any questions or feedback, add an issue or email me at: [email protected]

Overview

The figure illustrates adversarial attacks against KGE models for fraud detection. The knowledge graph consists of two types of entities - Person and BankAccount. The missing target triple to predict is (Sam, allied_with, Joe). Original KGE model predicts this triple as True, i.e. assigns it a higher score relative to synthetic negative triples. But a malicious attacker uses the instance attribution methods to either (a) delete an adversarial triple or (b) add an adversarial triple. Now, the KGE model predicts the missing target triple as False.

The attacker uses the instance attribution methods to identify the training triples that are most influential for model's prediciton on the target triple. These influential triples are used as adversarial deletions. Using the influential triple, the attacker further selects adversarial additions by replacing one of the two entities of the influential triple with the most dissimilar entity in the embedding space. For example, if the attacker identifies that (Sam, deposits_to, Suspicious_Account) is the most influential triple for predicting (Sam, allied_with, Joe), then they can add (Sam, deposits_to, Non_Suspicious_Account) to reduce the influence of the influential triple.

Reproducing the results

Setup

  • python = 3.8.5
  • pytorch = 1.4.0
  • numpy = 1.19.1
  • jupyter = 1.0.0
  • pandas = 1.1.0
  • matplotlib = 3.2.2
  • scikit-learn = 0.23.2
  • seaborn = 0.11.0

Experiments reported in the paper were run in the conda environment attribution_attack.yml.

Steps

  • The codebase and the bash scripts used for experiments are in KGEAttack.
  • To preprocess the original dataset, use the bash script preprocess.sh.
  • For each model-dataset combination, there is a bash script to train the original model, generate attacks from baselines and proposed attacks; and train poisoned model. These scripts are named as model-dataset.sh.
  • The instructions in these scripts are grouped together under the echo statements which indicate what they do.
  • The commandline argument --reproduce-results uses the hyperparameters that were used for the experiments reported in the paper. These hyperparameter values can be inspected in the function set_hyperparams() in utils.py.
  • To reproduce the results, specific instructions from the bash scripts can be run on commandline or the full script can be run.
  • All experiments in the paper were run on a shared HPC cluster that had Nvidia RTX 2080ti, Tesla K40 and V100 GPUs.

References

Parts of this codebase are based on the code from following repositories

Citation

@inproceedings{bhardwaj-etal-2021-adversarial,
    title = "Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods",
    author = "Bhardwaj, Peru  and
      Kelleher, John  and
      Costabello, Luca  and
      O{'}Sullivan, Declan",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.648",
    pages = "8225--8239",
    }
Owner
Peru Bhardwaj
PhD Student, Trinity College Dublin, Ireland.
Peru Bhardwaj
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023