Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Overview

Adversarial Attacks on Knowledge Graph Embeddings
via Instance Attribution Methods

This is the code repository to accompany the EMNLP 2021 paper on adversarial attacks on KGE models.
For any questions or feedback, add an issue or email me at: [email protected]

Overview

The figure illustrates adversarial attacks against KGE models for fraud detection. The knowledge graph consists of two types of entities - Person and BankAccount. The missing target triple to predict is (Sam, allied_with, Joe). Original KGE model predicts this triple as True, i.e. assigns it a higher score relative to synthetic negative triples. But a malicious attacker uses the instance attribution methods to either (a) delete an adversarial triple or (b) add an adversarial triple. Now, the KGE model predicts the missing target triple as False.

The attacker uses the instance attribution methods to identify the training triples that are most influential for model's prediciton on the target triple. These influential triples are used as adversarial deletions. Using the influential triple, the attacker further selects adversarial additions by replacing one of the two entities of the influential triple with the most dissimilar entity in the embedding space. For example, if the attacker identifies that (Sam, deposits_to, Suspicious_Account) is the most influential triple for predicting (Sam, allied_with, Joe), then they can add (Sam, deposits_to, Non_Suspicious_Account) to reduce the influence of the influential triple.

Reproducing the results

Setup

  • python = 3.8.5
  • pytorch = 1.4.0
  • numpy = 1.19.1
  • jupyter = 1.0.0
  • pandas = 1.1.0
  • matplotlib = 3.2.2
  • scikit-learn = 0.23.2
  • seaborn = 0.11.0

Experiments reported in the paper were run in the conda environment attribution_attack.yml.

Steps

  • The codebase and the bash scripts used for experiments are in KGEAttack.
  • To preprocess the original dataset, use the bash script preprocess.sh.
  • For each model-dataset combination, there is a bash script to train the original model, generate attacks from baselines and proposed attacks; and train poisoned model. These scripts are named as model-dataset.sh.
  • The instructions in these scripts are grouped together under the echo statements which indicate what they do.
  • The commandline argument --reproduce-results uses the hyperparameters that were used for the experiments reported in the paper. These hyperparameter values can be inspected in the function set_hyperparams() in utils.py.
  • To reproduce the results, specific instructions from the bash scripts can be run on commandline or the full script can be run.
  • All experiments in the paper were run on a shared HPC cluster that had Nvidia RTX 2080ti, Tesla K40 and V100 GPUs.

References

Parts of this codebase are based on the code from following repositories

Citation

@inproceedings{bhardwaj-etal-2021-adversarial,
    title = "Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods",
    author = "Bhardwaj, Peru  and
      Kelleher, John  and
      Costabello, Luca  and
      O{'}Sullivan, Declan",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.648",
    pages = "8225--8239",
    }
Owner
Peru Bhardwaj
PhD Student, Trinity College Dublin, Ireland.
Peru Bhardwaj
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022