A PyTorch Implementation of Neural IMage Assessment

Overview

NIMA: Neural IMage Assessment

Python 3.6+ MIT License

This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Processing) by Hossein Talebi and Peyman Milanfar. You can learn more from this post at Google Research Blog.

Implementation Details

  • The model was trained on the AVA (Aesthetic Visual Analysis) dataset containing 255,500+ images. You can get it from here. Note: there may be some corrupted images in the dataset, remove them first before you start training. Use provided CSVs which have already done this for you.

  • Dataset is split into 229,981 images for training, 12,691 images for validation and 12,818 images for testing.

  • An ImageNet pretrained VGG-16 is used as the base network. Should be easy to plug in the other two options (MobileNet and Inception-v2).

  • The learning rate setting differs from the original paper. Can't seem to get the model to converge using the original params. Also didn't do much hyper-param tuning therefore you could probably get better results. Other settings are all directly mirrored from the paper.

Requirements

Code is written using PyTorch 1.8.1 with CUDA 11.1. You can recreate the environment I used with conda by

conda env create -f env.yml

to install the dependancies.

Usage

To start training on the AVA dataset, first download the dataset from the link above and decompress which should create a directory named images/. Then download the curated annotation CSVs below which already splits the dataset (You can create your own split of course). Then do

python main.py --img_path /path/to/images/ --train --train_csv_file /path/to/train_labels.csv --val_csv_file /path/to/val_labels.csv --conv_base_lr 5e-4 --dense_lr 5e-3 --decay --ckpt_path /path/to/ckpts --epochs 100 --early_stoppping_patience 10

For inference, do

python -W ignore test.py --model /path/to/your_model --test_csv /path/to/test_labels.csv --test_images /path/to/images --predictions /path/to/save/predictions

See predictions/ for dumped predictions as an example.

Training Statistics

Training is done with early stopping. Here I set early_stopping_patience=10.

Pretrained Model

~0.069 EMD on validation. Not fully converged yet (constrained by resources). To continue training, download the pretrained weights and add --warm_start --warm_start_epoch 34 to your args.

Google Drive

Annotation CSV Files

Train Validation Test

Example Results

  • Here first shows some good predictions from the test set. Each image title starts with ground-truth rating followed by the predicted mean and std in the parentheses.

  • Also some failure cases, it would seem that the model usually fails at images with low/high aesthetic ratings.

  • The predicted aesthetic ratings from training on the AVA dataset are sensitive to contrast adjustments, preferring images with higher contrast. Below top row is the reference image with contrast c=1.0, while bottom images are enhanced with contrast [0.25, 0.75, 1.25, 1.75]. Contrast adjustment is done using ImageEnhance.Contrast from PIL (in this case pillow-simd).

License

MIT

Owner
yunxiaos
yunxiaos
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022