A PyTorch Implementation of Neural IMage Assessment

Overview

NIMA: Neural IMage Assessment

Python 3.6+ MIT License

This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Processing) by Hossein Talebi and Peyman Milanfar. You can learn more from this post at Google Research Blog.

Implementation Details

  • The model was trained on the AVA (Aesthetic Visual Analysis) dataset containing 255,500+ images. You can get it from here. Note: there may be some corrupted images in the dataset, remove them first before you start training. Use provided CSVs which have already done this for you.

  • Dataset is split into 229,981 images for training, 12,691 images for validation and 12,818 images for testing.

  • An ImageNet pretrained VGG-16 is used as the base network. Should be easy to plug in the other two options (MobileNet and Inception-v2).

  • The learning rate setting differs from the original paper. Can't seem to get the model to converge using the original params. Also didn't do much hyper-param tuning therefore you could probably get better results. Other settings are all directly mirrored from the paper.

Requirements

Code is written using PyTorch 1.8.1 with CUDA 11.1. You can recreate the environment I used with conda by

conda env create -f env.yml

to install the dependancies.

Usage

To start training on the AVA dataset, first download the dataset from the link above and decompress which should create a directory named images/. Then download the curated annotation CSVs below which already splits the dataset (You can create your own split of course). Then do

python main.py --img_path /path/to/images/ --train --train_csv_file /path/to/train_labels.csv --val_csv_file /path/to/val_labels.csv --conv_base_lr 5e-4 --dense_lr 5e-3 --decay --ckpt_path /path/to/ckpts --epochs 100 --early_stoppping_patience 10

For inference, do

python -W ignore test.py --model /path/to/your_model --test_csv /path/to/test_labels.csv --test_images /path/to/images --predictions /path/to/save/predictions

See predictions/ for dumped predictions as an example.

Training Statistics

Training is done with early stopping. Here I set early_stopping_patience=10.

Pretrained Model

~0.069 EMD on validation. Not fully converged yet (constrained by resources). To continue training, download the pretrained weights and add --warm_start --warm_start_epoch 34 to your args.

Google Drive

Annotation CSV Files

Train Validation Test

Example Results

  • Here first shows some good predictions from the test set. Each image title starts with ground-truth rating followed by the predicted mean and std in the parentheses.

  • Also some failure cases, it would seem that the model usually fails at images with low/high aesthetic ratings.

  • The predicted aesthetic ratings from training on the AVA dataset are sensitive to contrast adjustments, preferring images with higher contrast. Below top row is the reference image with contrast c=1.0, while bottom images are enhanced with contrast [0.25, 0.75, 1.25, 1.75]. Contrast adjustment is done using ImageEnhance.Contrast from PIL (in this case pillow-simd).

License

MIT

Owner
yunxiaos
yunxiaos
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022