NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

Overview

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

Automatic Evaluation Metric described in the papers BaryScore (EMNLP 2021) , DepthScore (Submitted), InfoLM (AAAI 2022).

Authors:

Goal :

This repository deals with automatic evaluation of NLG and addresses the special case of reference based evaluation. The goal is to build a metric m: where is the space of sentences. An example is given below:

Metric examples: similar sentences should have a high score, dissimilar should have a low score according to m.

Overview

We start by giving an overview of the proposed metrics.

DepthScore (Submitted)

DepthScore is a single layer metric based on pretrained contextualized representations. Similar to BertScore, it embeds both the candidate (C: It is freezing this morning) and the reference (R: The weather is cold today) using a single layer of Bert to obtain discrete probability measures and . Then, a similarity score is computed using the pseudo metric introduced here.

Depth Score

This statistical measure has been tested on Data2text and Summarization.

BaryScore (EMNLP 2021)

BaryScore is a multi-layers metric based on pretrained contextualized representations. Similar to MoverScore, it aggregates the layers of Bert before computing a similarity score. By modelling the layer output of deep contextualized embeddings as a probability distribution rather than by a vector embedding; BaryScore aggregates the different outputs through the Wasserstein space topology. MoverScore (right) leverages the information available in other layers by aggregating the layers using a power mean and then use a Wasserstein distance ().

BaryScore (left) vs MoverScore (right)

This statistical measure has been tested on Data2text, Summarization, Image captioning and NMT.

InfoLM (AAAI 2022)

InfoLM is a metric based on a pretrained language model ( PLM) (). Given an input sentence S mask at position i (), the PLM outputs a discret probability distribution () over the vocabulary (). The second key ingredient of InfoLM is a measure of information () that computes a measure of similarity between the aggregated distributions. Formally, InfoLM involes 3 steps:

  • 1. Compute individual distributions using for the candidate C and the reference R.
  • 2. Aggregate individual distributions using a weighted sum.
  • 3. Compute similarity using .
InfoLM

InfoLM is flexible as it can adapte to different criteria using different measures of information. This metric has been tested on Data2text and Summarization.

References

If you find this repo useful, please cite our papers:

@article{infolm_aaai2022,
  title={InfoLM: A New Metric to Evaluate Summarization \& Data2Text Generation},
  author={Colombo, Pierre and Clavel, Chloe and Piantanida, Pablo},
  journal={arXiv preprint arXiv:2112.01589},
  year={2021}
}
@inproceedings{colombo-etal-2021-automatic,
    title = "Automatic Text Evaluation through the Lens of {W}asserstein Barycenters",
    author = "Colombo, Pierre  and Staerman, Guillaume  and Clavel, Chlo{\'e}  and Piantanida, Pablo",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    year = "2021",
    pages = "10450--10466"
}
@article{depth_score,
  title={A pseudo-metric between probability distributions based on depth-trimmed regions},
  author={Staerman, Guillaume and Mozharovskyi, Pavlo and Colombo, Pierre and Cl{\'e}men{\c{c}}on, St{\'e}phan and d'Alch{\'e}-Buc, Florence},
  journal={arXiv preprint arXiv:2103.12711},
  year={2021}
}

Usage

Python Function

Running our metrics can be computationally intensive (because it relies on pretrained models). Therefore, a GPU is usually necessary. If you don't have access to a GPU, you can use light pretrained representations such as TinyBERT, DistilBERT.

We provide example inputs under <metric_name>.py. For example for BaryScore

metric_call = BaryScoreMetric()

ref = [
        'I like my cakes very much',
        'I hate these cakes!']
hypothesis = ['I like my cakes very much',
                  'I like my cakes very much']

metric_call.prepare_idfs(ref, hypothesis)
final_preds = metric_call.evaluate_batch(ref, hypothesis)
print(final_preds)

Command Line Interface (CLI)

We provide a command line interface (CLI) of BERTScore as well as a python module. For the CLI, you can use it as follows:

export metric=infolm
export measure_to_use=fisher_rao
CUDA_VISIBLE_DEVICES=0 python score_cli.py --ref="samples/refs.txt" --cand="samples/hyps.txt" --metric_name=${metric} --measure_to_use=${measure_to_use}

See more options by python score_cli.py -h.

Practical Tips

  • Unlike BERT, RoBERTa uses GPT2-style tokenizer which creates addition " " tokens when there are multiple spaces appearing together. It is recommended to remove addition spaces by sent = re.sub(r' +', ' ', sent) or sent = re.sub(r'\s+', ' ', sent).
  • Using inverse document frequency (idf) on the reference sentences to weigh word importance may correlate better with human judgment. However, when the set of reference sentences become too small, the idf score would become inaccurate/invalid. To use idf, please set --idf when using the CLI tool.
  • When you are low on GPU memory, consider setting batch_size to a low number.

Practical Limitation

  • Because pretrained representations have learned positional embeddings with max length 512, our scores are undefined between sentences longer than 510 (512 after adding [CLS] and [SEP] tokens) . The sentences longer than this will be truncated. Please consider using larger models which can support much longer inputs.

Acknowledgements

Our research was granted access to the HPC resources of IDRIS under the allocation 2021-AP010611665 as well as under the project 2021-101838 made by GENCI.

Owner
Pierre Colombo
Pierre Colombo
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022