NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

Overview

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

Automatic Evaluation Metric described in the papers BaryScore (EMNLP 2021) , DepthScore (Submitted), InfoLM (AAAI 2022).

Authors:

Goal :

This repository deals with automatic evaluation of NLG and addresses the special case of reference based evaluation. The goal is to build a metric m: where is the space of sentences. An example is given below:

Metric examples: similar sentences should have a high score, dissimilar should have a low score according to m.

Overview

We start by giving an overview of the proposed metrics.

DepthScore (Submitted)

DepthScore is a single layer metric based on pretrained contextualized representations. Similar to BertScore, it embeds both the candidate (C: It is freezing this morning) and the reference (R: The weather is cold today) using a single layer of Bert to obtain discrete probability measures and . Then, a similarity score is computed using the pseudo metric introduced here.

Depth Score

This statistical measure has been tested on Data2text and Summarization.

BaryScore (EMNLP 2021)

BaryScore is a multi-layers metric based on pretrained contextualized representations. Similar to MoverScore, it aggregates the layers of Bert before computing a similarity score. By modelling the layer output of deep contextualized embeddings as a probability distribution rather than by a vector embedding; BaryScore aggregates the different outputs through the Wasserstein space topology. MoverScore (right) leverages the information available in other layers by aggregating the layers using a power mean and then use a Wasserstein distance ().

BaryScore (left) vs MoverScore (right)

This statistical measure has been tested on Data2text, Summarization, Image captioning and NMT.

InfoLM (AAAI 2022)

InfoLM is a metric based on a pretrained language model ( PLM) (). Given an input sentence S mask at position i (), the PLM outputs a discret probability distribution () over the vocabulary (). The second key ingredient of InfoLM is a measure of information () that computes a measure of similarity between the aggregated distributions. Formally, InfoLM involes 3 steps:

  • 1. Compute individual distributions using for the candidate C and the reference R.
  • 2. Aggregate individual distributions using a weighted sum.
  • 3. Compute similarity using .
InfoLM

InfoLM is flexible as it can adapte to different criteria using different measures of information. This metric has been tested on Data2text and Summarization.

References

If you find this repo useful, please cite our papers:

@article{infolm_aaai2022,
  title={InfoLM: A New Metric to Evaluate Summarization \& Data2Text Generation},
  author={Colombo, Pierre and Clavel, Chloe and Piantanida, Pablo},
  journal={arXiv preprint arXiv:2112.01589},
  year={2021}
}
@inproceedings{colombo-etal-2021-automatic,
    title = "Automatic Text Evaluation through the Lens of {W}asserstein Barycenters",
    author = "Colombo, Pierre  and Staerman, Guillaume  and Clavel, Chlo{\'e}  and Piantanida, Pablo",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    year = "2021",
    pages = "10450--10466"
}
@article{depth_score,
  title={A pseudo-metric between probability distributions based on depth-trimmed regions},
  author={Staerman, Guillaume and Mozharovskyi, Pavlo and Colombo, Pierre and Cl{\'e}men{\c{c}}on, St{\'e}phan and d'Alch{\'e}-Buc, Florence},
  journal={arXiv preprint arXiv:2103.12711},
  year={2021}
}

Usage

Python Function

Running our metrics can be computationally intensive (because it relies on pretrained models). Therefore, a GPU is usually necessary. If you don't have access to a GPU, you can use light pretrained representations such as TinyBERT, DistilBERT.

We provide example inputs under <metric_name>.py. For example for BaryScore

metric_call = BaryScoreMetric()

ref = [
        'I like my cakes very much',
        'I hate these cakes!']
hypothesis = ['I like my cakes very much',
                  'I like my cakes very much']

metric_call.prepare_idfs(ref, hypothesis)
final_preds = metric_call.evaluate_batch(ref, hypothesis)
print(final_preds)

Command Line Interface (CLI)

We provide a command line interface (CLI) of BERTScore as well as a python module. For the CLI, you can use it as follows:

export metric=infolm
export measure_to_use=fisher_rao
CUDA_VISIBLE_DEVICES=0 python score_cli.py --ref="samples/refs.txt" --cand="samples/hyps.txt" --metric_name=${metric} --measure_to_use=${measure_to_use}

See more options by python score_cli.py -h.

Practical Tips

  • Unlike BERT, RoBERTa uses GPT2-style tokenizer which creates addition " " tokens when there are multiple spaces appearing together. It is recommended to remove addition spaces by sent = re.sub(r' +', ' ', sent) or sent = re.sub(r'\s+', ' ', sent).
  • Using inverse document frequency (idf) on the reference sentences to weigh word importance may correlate better with human judgment. However, when the set of reference sentences become too small, the idf score would become inaccurate/invalid. To use idf, please set --idf when using the CLI tool.
  • When you are low on GPU memory, consider setting batch_size to a low number.

Practical Limitation

  • Because pretrained representations have learned positional embeddings with max length 512, our scores are undefined between sentences longer than 510 (512 after adding [CLS] and [SEP] tokens) . The sentences longer than this will be truncated. Please consider using larger models which can support much longer inputs.

Acknowledgements

Our research was granted access to the HPC resources of IDRIS under the allocation 2021-AP010611665 as well as under the project 2021-101838 made by GENCI.

Owner
Pierre Colombo
Pierre Colombo
SlotRefine: A Fast Non-Autoregressive Model forJoint Intent Detection and Slot Filling

SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling Reference Main paper to be cited (Di Wu et al., 2020) @article

Moore 34 Nov 03, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022