The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

Overview

P2PNet (ICCV2021 Oral Presentation)

This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework.

An brief introduction of P2PNet can be found at 机器之心 (almosthuman).

The codes is tested with PyTorch 1.5.0. It may not run with other versions.

Visualized demos for P2PNet

The network

The overall architecture of the P2PNet. Built upon the VGG16, it firstly introduce an upsampling path to obtain fine-grained feature map. Then it exploits two branches to simultaneously predict a set of point proposals and their confidence scores.

Comparison with state-of-the-art methods

The P2PNet achieved state-of-the-art performance on several challenging datasets with various densities.

Methods Venue SHTechPartA
MAE/MSE
SHTechPartB
MAE/MSE
UCF_CC_50
MAE/MSE
UCF_QNRF
MAE/MSE
CAN CVPR'19 62.3/100.0 7.8/12.2 212.2/243.7 107.0/183.0
Bayesian+ ICCV'19 62.8/101.8 7.7/12.7 229.3/308.2 88.7/154.8
S-DCNet ICCV'19 58.3/95.0 6.7/10.7 204.2/301.3 104.4/176.1
SANet+SPANet ICCV'19 59.4/92.5 6.5/9.9 232.6/311.7 -/-
DUBNet AAAI'20 64.6/106.8 7.7/12.5 243.8/329.3 105.6/180.5
SDANet AAAI'20 63.6/101.8 7.8/10.2 227.6/316.4 -/-
ADSCNet CVPR'20 55.4/97.7 6.4/11.3 198.4/267.3 71.3/132.5
ASNet CVPR'20 57.78/90.13 -/- 174.84/251.63 91.59/159.71
AMRNet ECCV'20 61.59/98.36 7.02/11.00 184.0/265.8 86.6/152.2
AMSNet ECCV'20 56.7/93.4 6.7/10.2 208.4/297.3 101.8/163.2
DM-Count NeurIPS'20 59.7/95.7 7.4/11.8 211.0/291.5 85.6/148.3
Ours - 52.74/85.06 6.25/9.9 172.72/256.18 85.32/154.5

Comparison on the NWPU-Crowd dataset.

Methods MAE[O] MSE[O] MAE[L] MAE[S]
MCNN 232.5 714.6 220.9 1171.9
SANet 190.6 491.4 153.8 716.3
CSRNet 121.3 387.8 112.0 522.7
PCC-Net 112.3 457.0 111.0 777.6
CANNet 110.0 495.3 102.3 718.3
Bayesian+ 105.4 454.2 115.8 750.5
S-DCNet 90.2 370.5 82.9 567.8
DM-Count 88.4 388.6 88.0 498.0
Ours 77.44 362 83.28 553.92

The overall performance for both counting and localization.

nAP$_{\delta}$ SHTechPartA SHTechPartB UCF_CC_50 UCF_QNRF NWPU_Crowd
$\delta=0.05$ 10.9% 23.8% 5.0% 5.9% 12.9%
$\delta=0.25$ 70.3% 84.2% 54.5% 55.4% 71.3%
$\delta=0.50$ 90.1% 94.1% 88.1% 83.2% 89.1%
$\delta={{0.05:0.05:0.50}}$ 64.4% 76.3% 54.3% 53.1% 65.0%

Comparison for the localization performance in terms of F1-Measure on NWPU.

Method F1-Measure Precision Recall
FasterRCNN 0.068 0.958 0.035
TinyFaces 0.567 0.529 0.611
RAZ 0.599 0.666 0.543
Crowd-SDNet 0.637 0.651 0.624
PDRNet 0.653 0.675 0.633
TopoCount 0.692 0.683 0.701
D2CNet 0.700 0.741 0.662
Ours 0.712 0.729 0.695

Installation

  • Clone this repo into a directory named P2PNET_ROOT
  • Organize your datasets as required
  • Install Python dependencies. We use python 3.6.5 and pytorch 1.5.0
pip install -r requirements.txt

Organize the counting dataset

We use a list file to collect all the images and their ground truth annotations in a counting dataset. When your dataset is organized as recommended in the following, the format of this list file is defined as:

train/scene01/img01.jpg train/scene01/img01.txt
train/scene01/img02.jpg train/scene01/img02.txt
...
train/scene02/img01.jpg train/scene02/img01.txt

Dataset structures:

DATA_ROOT/
        |->train/
        |    |->scene01/
        |    |->scene02/
        |    |->...
        |->test/
        |    |->scene01/
        |    |->scene02/
        |    |->...
        |->train.list
        |->test.list

DATA_ROOT is your path containing the counting datasets.

Annotations format

For the annotations of each image, we use a single txt file which contains one annotation per line. Note that indexing for pixel values starts at 0. The expected format of each line is:

x1 y1
x2 y2
...

Training

The network can be trained using the train.py script. For training on SHTechPartA, use

CUDA_VISIBLE_DEVICES=0 python train.py --data_root $DATA_ROOT \
    --dataset_file SHHA \
    --epochs 3500 \
    --lr_drop 3500 \
    --output_dir ./logs \
    --checkpoints_dir ./weights \
    --tensorboard_dir ./logs \
    --lr 0.0001 \
    --lr_backbone 0.00001 \
    --batch_size 8 \
    --eval_freq 1 \
    --gpu_id 0

By default, a periodic evaluation will be conducted on the validation set.

Testing

A trained model (with an MAE of 51.96) on SHTechPartA is available at "./weights", run the following commands to launch a visualization demo:

CUDA_VISIBLE_DEVICES=0 python run_test.py --weight_path ./weights/SHTechA.pth --output_dir ./logs/

Acknowledgements

  • Part of codes are borrowed from the C^3 Framework.
  • We refer to DETR to implement our matching strategy.

Citing P2PNet

If you find P2PNet is useful in your project, please consider citing us:

@inproceedings{song2021rethinking,
  title={Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework},
  author={Song, Qingyu and Wang, Changan and Jiang, Zhengkai and Wang, Yabiao and Tai, Ying and Wang, Chengjie and Li, Jilin and Huang, Feiyue and Wu, Yang},
  journal={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Related works from Tencent Youtu Lab

  • [AAAI2021] To Choose or to Fuse? Scale Selection for Crowd Counting. (paper link & codes)
  • [ICCV2021] Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting. (paper link & codes)
Owner
Tencent YouTu Research
Tencent YouTu Research
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022