An AFL implementation with UnTracer (our coverage-guided tracer)

Overview

UnTracer-AFL

This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuzzer AFL. Coverage-guided tracing employs two versions of the target binary: (1) a forkserver-only oracle binary modified with basic block-level software interrupts on unseen basic blocks for quickly identifying coverage-increasing testcases and (2) a fully-instrumented tracer binary for tracing the coverage of all coverage-increasing testcases.

In UnTracer, both the oracle and tracer binaries use the AFL-inspired forkserver execution model. For oracle instrumentation we require all target binaries be compiled with untracer-cc -- our "forkserver-only" modification of AFL's assembly-time instrumenter afl-cc. For tracer binary instrumentation we utilize Dyninst with much of our code based-off AFL-Dyninst. We plan to incorporate a purely binary-only ("black-box") instrumentation approach in the near future. Our current implementation of UnTracer supports basic block coverage.

Presented in our paper Full-speed Fuzzing: Reducing Fuzzing Overhead through Coverage-guided Tracing
(2019 IEEE Symposium on Security and Privacy).
Citing this repository: @inproceedings{nagy:fullspeedfuzzing,
title = {Full-speed Fuzzing: Reducing Fuzzing Overhead through Coverage-guided Tracing},
author = {Stefan Nagy and Matthew Hicks},
booktitle = {{IEEE} Symposium on Security and Privacy (Oakland)},
year = {2019},}
Developers: Stefan Nagy ([email protected]) and Matthew Hicks ([email protected])
License: MIT License
Disclaimer: This software is strictly a research prototype.

INSTALLATION

1. Download and build Dyninst (we used v9.3.2)

sudo apt-get install cmake m4 zlib1g-dev libboost-all-dev libiberty-dev
wget https://github.com/dyninst/dyninst/archive/v9.3.2.tar.gz
tar -xf v9.3.2.tar.gz dyninst-9.3.2/
mkdir dynBuildDir
cd dynBuildDir
cmake ../dyninst-9.3.2/ -DCMAKE_INSTALL_PREFIX=`pwd`
make
make install

2. Download UnTracer-AFL (this repo)

git clone https://github.com/FoRTE-Research/UnTracer-AFL

3. Configure environment variables

export DYNINST_INSTALL=/path/to/dynBuildDir
export UNTRACER_AFL_PATH=/path/to/Untracer-AFL

export DYNINSTAPI_RT_LIB=$DYNINST_INSTALL/lib/libdyninstAPI_RT.so
export LD_LIBRARY_PATH=$DYNINST_INSTALL/lib:$UNTRACER_AFL_PATH
export PATH=$PATH:$UNTRACER_AFL_PATH

4. Build UnTracer-AFL

Update DYN_ROOT in UnTracer-AFL/Makefile to your Dyninst install directory. Then, run the following commands:

make clean && make all

USAGE

First, compile all target binaries using "forkserver-only" instrumentation. As with AFL, you will need to manually set the C compiler (untracer-clang or untracer-gcc) and/or C++ compiler (untracer-clang++ or untracer-g++). Note that only non-position-independent target binaries are supported, so compile all target binaries with CFLAG -no-pie (unnecessary for Clang). For example:

NOTE: We provide a set of fuzzing-ready benchmarks available here: https://github.com/FoRTE-Research/FoRTE-FuzzBench.

$ CC=/path/to/afl/untracer-clang ./configure --disable-shared
$ CXX=/path/to/afl/untracer-clang++.
$ make clean all
Instrumenting in forkserver-only mode...

Then, run untracer-afl as follows:

untracer-afl -i [/path/to/seed/dir] -o [/path/to/out/dir] [optional_args] -- [/path/to/target] [target_args]

Status Screen

  • calib execs and trim execs - Number of testcase calibration and trimming executions, respectively. Tracing is done for both.
  • block coverage - Percentage of total blocks found (left) and the number of total blocks (right).
  • traced / queued - Ratio of traced versus queued testcases. This ratio should (ideally) be 1:1 but will increase as trace timeouts occur.
  • trace tmouts (discarded) - Number of testcases which timed out during tracing. Like AFL, we do not queue these.
  • no new bits (discarded) - Number of testcases which were marked coverage-increasing by the oracle but did not actually increase coverage. This should (ideally) be 0.

Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022