4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

Overview

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR)

Challenge Site

Overview

Synthetic Aperture Radar (SAR) has received more attention due to its complementary superiority on capturing significant information in the remote sensing area. However, for an Aerial View Object Classification (AVOC) task, SAR images still suffer from the long-tailed distribution of the aerial view objects. This disparity dampens the performance of classification methods, especially for the datasensitive deep learning models. In this paper, we propose a two-stage shake-shake network to tackle the long-tailed learning problem. Specifically, it decouples the learning procedure into the representation learning stage and the classification learning stage. Moreover, we apply the test time augmentation (TTA) and a post-processing approach (CAN) to improve the accuracy. In the PBVS 2022 Multi-modal Aerial View Object Classification Challenge Track 1, our method achieves 21.82% and 27.97% accuracy in the development phase and testing phase respectively, which achieves the top-tier among all the participants.

image-20220417170228668

Requirements

  • Ubuntu (It's only tested on Ubuntu, so it may not work on Windows.)

  • Python >= 3.7

  • PyTorch >= 1.4.0

  • torchvision

    pip install -r requirements.txt

Usage

The first stage training

python train.py --config ./configs/sar10/shake_shake.yaml
  • You need to change the value of “dataset_dir”, “dataset_dir_val”, under the “dataset” field and “output_dir” under the “train” field in the file “./configs/sar10/shake_shake.yaml”。

The second stage training

python train.py --config ./configs/sar10/shake_shake_fc.yaml
  • You need to change the value of “dataset_dir”, “dataset_dir_val” under the “dataset” field and “output_dir”, “checkpoint” under the “train” field in the file “./configs/sar10/shake_shake_fc.yaml”。

Test

python predict_TTA.py 
  • You need to change the value of “dataset_dir”, “checkpoint”, under the “test” field in the file “./configs/sar10/shake_shake.yaml”, then you can find the results in file “.result/results.csv”。
  • You can download the trained model here.

Acknowledge

The codes borrow heavily from hysts/pytorch_image_classification.

Owner
LinpengPan
LinpengPan
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022